langchain/docs/extras/integrations/llms/anyscale.ipynb
2023-07-23 23:23:16 -07:00

178 lines
4.4 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "9597802c",
"metadata": {},
"source": [
"# Anyscale\n",
"\n",
"[Anyscale](https://www.anyscale.com/) is a fully-managed [Ray](https://www.ray.io/) platform, on which you can build, deploy, and manage scalable AI and Python applications\n",
"\n",
"This example goes over how to use LangChain to interact with `Anyscale` [service](https://docs.anyscale.com/productionize/services-v2/get-started). \n",
"\n",
"It will send the requests to Anyscale Service endpoint, which is concatenate `ANYSCALE_SERVICE_URL` and `ANYSCALE_SERVICE_ROUTE`, with a token defined in `ANYSCALE_SERVICE_TOKEN`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5472a7cd-af26-48ca-ae9b-5f6ae73c74d2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"ANYSCALE_SERVICE_URL\"] = ANYSCALE_SERVICE_URL\n",
"os.environ[\"ANYSCALE_SERVICE_ROUTE\"] = ANYSCALE_SERVICE_ROUTE\n",
"os.environ[\"ANYSCALE_SERVICE_TOKEN\"] = ANYSCALE_SERVICE_TOKEN"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6fb585dd",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.llms import Anyscale\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "035dea0f",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f3458d9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm = Anyscale()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a641dbd9",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9f844993",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"question = \"When was George Washington president?\"\n",
"\n",
"llm_chain.run(question)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "42f05b34-1a44-4cbd-8342-35c1572b6765",
"metadata": {},
"source": [
"With Ray, we can distribute the queries without asyncrhonized implementation. This not only applies to Anyscale LLM model, but to any other Langchain LLM models which do not have `_acall` or `_agenerate` implemented"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "08b23adc-2b29-4c38-b538-47b3c3d840a6",
"metadata": {},
"outputs": [],
"source": [
"prompt_list = [\n",
" \"When was George Washington president?\",\n",
" \"Explain to me the difference between nuclear fission and fusion.\",\n",
" \"Give me a list of 5 science fiction books I should read next.\",\n",
" \"Explain the difference between Spark and Ray.\",\n",
" \"Suggest some fun holiday ideas.\",\n",
" \"Tell a joke.\",\n",
" \"What is 2+2?\",\n",
" \"Explain what is machine learning like I am five years old.\",\n",
" \"Explain what is artifical intelligence.\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b45abb9-b764-497d-af99-0df1d4e335e0",
"metadata": {},
"outputs": [],
"source": [
"import ray\n",
"\n",
"\n",
"@ray.remote\n",
"def send_query(llm, prompt):\n",
" resp = llm(prompt)\n",
" return resp\n",
"\n",
"\n",
"futures = [send_query.remote(llm, prompt) for prompt in prompt_list]\n",
"results = ray.get(futures)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}