mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
77 lines
2.4 KiB
Python
77 lines
2.4 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForToolRun
|
|
|
|
from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class EdenAiObjectDetectionTool(EdenaiTool):
|
|
"""Tool that queries the Eden AI Object detection API.
|
|
|
|
for api reference check edenai documentation:
|
|
https://docs.edenai.co/reference/image_object_detection_create.
|
|
|
|
To use, you should have
|
|
the environment variable ``EDENAI_API_KEY`` set with your API token.
|
|
You can find your token here: https://app.edenai.run/admin/account/settings
|
|
|
|
"""
|
|
|
|
name = "edenai_object_detection"
|
|
|
|
description = (
|
|
"A wrapper around edenai Services Object Detection . "
|
|
"""Useful for when you have to do an to identify and locate
|
|
(with bounding boxes) objects in an image """
|
|
"Input should be the string url of the image to identify."
|
|
)
|
|
|
|
show_positions: bool = False
|
|
|
|
feature = "image"
|
|
subfeature = "object_detection"
|
|
|
|
def _parse_json(self, json_data: dict) -> str:
|
|
result = []
|
|
label_info = []
|
|
|
|
for found_obj in json_data["items"]:
|
|
label_str = f"{found_obj['label']} - Confidence {found_obj['confidence']}"
|
|
x_min = found_obj.get("x_min")
|
|
x_max = found_obj.get("x_max")
|
|
y_min = found_obj.get("y_min")
|
|
y_max = found_obj.get("y_max")
|
|
if self.show_positions and all(
|
|
[x_min, x_max, y_min, y_max]
|
|
): # some providers don't return positions
|
|
label_str += f""",at the position x_min: {x_min}, x_max: {x_max},
|
|
y_min: {y_min}, y_max: {y_max}"""
|
|
label_info.append(label_str)
|
|
|
|
result.append("\n".join(label_info))
|
|
return "\n\n".join(result)
|
|
|
|
def _parse_response(self, response: list) -> str:
|
|
if len(response) == 1:
|
|
result = self._parse_json(response[0])
|
|
else:
|
|
for entry in response:
|
|
if entry.get("provider") == "eden-ai":
|
|
result = self._parse_json(entry)
|
|
|
|
return result
|
|
|
|
def _run(
|
|
self,
|
|
query: str,
|
|
run_manager: Optional[CallbackManagerForToolRun] = None,
|
|
) -> str:
|
|
"""Use the tool."""
|
|
query_params = {"file_url": query, "attributes_as_list": False}
|
|
return self._call_eden_ai(query_params)
|