langchain/libs/community/langchain_community/tools/edenai/image_objectdetection.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

77 lines
2.4 KiB
Python

from __future__ import annotations
import logging
from typing import Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool
logger = logging.getLogger(__name__)
class EdenAiObjectDetectionTool(EdenaiTool):
"""Tool that queries the Eden AI Object detection API.
for api reference check edenai documentation:
https://docs.edenai.co/reference/image_object_detection_create.
To use, you should have
the environment variable ``EDENAI_API_KEY`` set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
"""
name = "edenai_object_detection"
description = (
"A wrapper around edenai Services Object Detection . "
"""Useful for when you have to do an to identify and locate
(with bounding boxes) objects in an image """
"Input should be the string url of the image to identify."
)
show_positions: bool = False
feature = "image"
subfeature = "object_detection"
def _parse_json(self, json_data: dict) -> str:
result = []
label_info = []
for found_obj in json_data["items"]:
label_str = f"{found_obj['label']} - Confidence {found_obj['confidence']}"
x_min = found_obj.get("x_min")
x_max = found_obj.get("x_max")
y_min = found_obj.get("y_min")
y_max = found_obj.get("y_max")
if self.show_positions and all(
[x_min, x_max, y_min, y_max]
): # some providers don't return positions
label_str += f""",at the position x_min: {x_min}, x_max: {x_max},
y_min: {y_min}, y_max: {y_max}"""
label_info.append(label_str)
result.append("\n".join(label_info))
return "\n\n".join(result)
def _parse_response(self, response: list) -> str:
if len(response) == 1:
result = self._parse_json(response[0])
else:
for entry in response:
if entry.get("provider") == "eden-ai":
result = self._parse_json(entry)
return result
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
query_params = {"file_url": query, "attributes_as_list": False}
return self._call_eden_ai(query_params)