mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
9ffca3b92a
Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
60 lines
1.3 KiB
Python
60 lines
1.3 KiB
Python
from langchain.chat_models import ChatOpenAI
|
||
from langchain.prompts import ChatPromptTemplate
|
||
from langchain.utilities import DuckDuckGoSearchAPIWrapper
|
||
from langchain_core.output_parsers import StrOutputParser
|
||
from langchain_core.pydantic_v1 import BaseModel
|
||
from langchain_core.runnables import RunnablePassthrough
|
||
|
||
template = """Answer the users question based only on the following context:
|
||
|
||
<context>
|
||
{context}
|
||
</context>
|
||
|
||
Question: {question}
|
||
"""
|
||
prompt = ChatPromptTemplate.from_template(template)
|
||
|
||
model = ChatOpenAI(temperature=0)
|
||
|
||
search = DuckDuckGoSearchAPIWrapper()
|
||
|
||
|
||
def retriever(query):
|
||
return search.run(query)
|
||
|
||
|
||
template = """Provide a better search query for \
|
||
web search engine to answer the given question, end \
|
||
the queries with ’**’. Question: \
|
||
{x} Answer:"""
|
||
rewrite_prompt = ChatPromptTemplate.from_template(template)
|
||
|
||
# Parser to remove the `**`
|
||
|
||
|
||
def _parse(text):
|
||
return text.strip("**")
|
||
|
||
|
||
rewriter = rewrite_prompt | ChatOpenAI(temperature=0) | StrOutputParser() | _parse
|
||
|
||
chain = (
|
||
{
|
||
"context": {"x": RunnablePassthrough()} | rewriter | retriever,
|
||
"question": RunnablePassthrough(),
|
||
}
|
||
| prompt
|
||
| model
|
||
| StrOutputParser()
|
||
)
|
||
|
||
# Add input type for playground
|
||
|
||
|
||
class Question(BaseModel):
|
||
__root__: str
|
||
|
||
|
||
chain = chain.with_types(input_type=Question)
|