langchain/libs/partners/fireworks/langchain_fireworks/embeddings.py
Yufei (Benny) Chen ee6a773456
fireworks[patch]: Add Fireworks partner packages (#17694)
---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-23 20:45:47 +00:00

53 lines
1.7 KiB
Python

import os
from typing import Any, Dict, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str
from openai import OpenAI # type: ignore
class FireworksEmbeddings(BaseModel, Embeddings):
"""FireworksEmbeddings embedding model.
Example:
.. code-block:: python
from langchain_fireworks import FireworksEmbeddings
model = FireworksEmbeddings(
model='nomic-ai/nomic-embed-text-v1.5'
)
"""
_client: OpenAI = Field(default=None)
fireworks_api_key: SecretStr = convert_to_secret_str("")
model: str = "nomic-ai/nomic-embed-text-v1.5"
@root_validator()
def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate environment variables."""
fireworks_api_key = convert_to_secret_str(
values.get("fireworks_api_key") or os.getenv("FIREWORKS_API_KEY") or ""
)
values["fireworks_api_key"] = fireworks_api_key
# note this sets it globally for module
# there isn't currently a way to pass it into client
api_key = fireworks_api_key.get_secret_value()
values["_client"] = OpenAI(
api_key=api_key, base_url="https://api.fireworks.ai/inference/v1"
)
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
return [
i.embedding
for i in self._client.embeddings.create(input=texts, model=self.model).data
]
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
return self.embed_documents([text])[0]