mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
745 lines
29 KiB
Python
745 lines
29 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import logging
|
|
import uuid
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
AsyncContextManager,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
import httpx
|
|
from httpx_sse import EventSource, aconnect_sse, connect_sse
|
|
from langchain_core._api import beta
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.language_models.llms import create_base_retry_decorator
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
InvalidToolCall,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolCall,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
make_invalid_tool_call,
|
|
parse_tool_call,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _create_retry_decorator(
|
|
llm: ChatMistralAI,
|
|
run_manager: Optional[
|
|
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
|
|
] = None,
|
|
) -> Callable[[Any], Any]:
|
|
"""Returns a tenacity retry decorator, preconfigured to handle exceptions"""
|
|
|
|
errors = [httpx.RequestError, httpx.StreamError]
|
|
return create_base_retry_decorator(
|
|
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
|
|
)
|
|
|
|
|
|
def _convert_mistral_chat_message_to_message(
|
|
_message: Dict,
|
|
) -> BaseMessage:
|
|
role = _message["role"]
|
|
assert role == "assistant", f"Expected role to be 'assistant', got {role}"
|
|
content = cast(str, _message["content"])
|
|
|
|
additional_kwargs: Dict = {}
|
|
tool_calls = []
|
|
invalid_tool_calls = []
|
|
if raw_tool_calls := _message.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
for raw_tool_call in raw_tool_calls:
|
|
try:
|
|
parsed: dict = cast(
|
|
dict, parse_tool_call(raw_tool_call, return_id=True)
|
|
)
|
|
if not parsed["id"]:
|
|
tool_call_id = uuid.uuid4().hex[:]
|
|
tool_calls.append(
|
|
{
|
|
**parsed,
|
|
**{"id": tool_call_id},
|
|
},
|
|
)
|
|
else:
|
|
tool_calls.append(parsed)
|
|
except Exception as e:
|
|
invalid_tool_calls.append(
|
|
dict(make_invalid_tool_call(raw_tool_call, str(e)))
|
|
)
|
|
return AIMessage(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_calls=tool_calls,
|
|
invalid_tool_calls=invalid_tool_calls,
|
|
)
|
|
|
|
|
|
def _raise_on_error(response: httpx.Response) -> None:
|
|
"""Raise an error if the response is an error."""
|
|
if httpx.codes.is_error(response.status_code):
|
|
error_message = response.read().decode("utf-8")
|
|
raise httpx.HTTPStatusError(
|
|
f"Error response {response.status_code} "
|
|
f"while fetching {response.url}: {error_message}",
|
|
request=response.request,
|
|
response=response,
|
|
)
|
|
|
|
|
|
async def _araise_on_error(response: httpx.Response) -> None:
|
|
"""Raise an error if the response is an error."""
|
|
if httpx.codes.is_error(response.status_code):
|
|
error_message = (await response.aread()).decode("utf-8")
|
|
raise httpx.HTTPStatusError(
|
|
f"Error response {response.status_code} "
|
|
f"while fetching {response.url}: {error_message}",
|
|
request=response.request,
|
|
response=response,
|
|
)
|
|
|
|
|
|
async def _aiter_sse(
|
|
event_source_mgr: AsyncContextManager[EventSource],
|
|
) -> AsyncIterator[Dict]:
|
|
"""Iterate over the server-sent events."""
|
|
async with event_source_mgr as event_source:
|
|
await _araise_on_error(event_source.response)
|
|
async for event in event_source.aiter_sse():
|
|
if event.data == "[DONE]":
|
|
return
|
|
yield event.json()
|
|
|
|
|
|
async def acompletion_with_retry(
|
|
llm: ChatMistralAI,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the async completion call."""
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@retry_decorator
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
if "stream" not in kwargs:
|
|
kwargs["stream"] = False
|
|
stream = kwargs["stream"]
|
|
if stream:
|
|
event_source = aconnect_sse(
|
|
llm.async_client, "POST", "/chat/completions", json=kwargs
|
|
)
|
|
return _aiter_sse(event_source)
|
|
else:
|
|
response = await llm.async_client.post(url="/chat/completions", json=kwargs)
|
|
await _araise_on_error(response)
|
|
return response.json()
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_delta: Dict, default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = _delta.get("role")
|
|
content = _delta.get("content") or ""
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
additional_kwargs: Dict = {}
|
|
if raw_tool_calls := _delta.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = raw_tool_calls
|
|
try:
|
|
tool_call_chunks = []
|
|
for raw_tool_call in raw_tool_calls:
|
|
if not raw_tool_call.get("index") and not raw_tool_call.get("id"):
|
|
tool_call_id = uuid.uuid4().hex[:]
|
|
else:
|
|
tool_call_id = raw_tool_call.get("id")
|
|
tool_call_chunks.append(
|
|
{
|
|
"name": raw_tool_call["function"].get("name"),
|
|
"args": raw_tool_call["function"].get("arguments"),
|
|
"id": tool_call_id,
|
|
"index": raw_tool_call.get("index"),
|
|
}
|
|
)
|
|
except KeyError:
|
|
pass
|
|
else:
|
|
tool_call_chunks = []
|
|
return AIMessageChunk(
|
|
content=content,
|
|
additional_kwargs=additional_kwargs,
|
|
tool_call_chunks=tool_call_chunks,
|
|
)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role)
|
|
else:
|
|
return default_class(content=content)
|
|
|
|
|
|
def _format_tool_call_for_mistral(tool_call: ToolCall) -> dict:
|
|
"""Format Langchain ToolCall to dict expected by Mistral."""
|
|
result: Dict[str, Any] = {
|
|
"function": {
|
|
"name": tool_call["name"],
|
|
"arguments": json.dumps(tool_call["args"]),
|
|
}
|
|
}
|
|
if _id := tool_call.get("id"):
|
|
result["id"] = _id
|
|
|
|
return result
|
|
|
|
|
|
def _format_invalid_tool_call_for_mistral(invalid_tool_call: InvalidToolCall) -> dict:
|
|
"""Format Langchain InvalidToolCall to dict expected by Mistral."""
|
|
result: Dict[str, Any] = {
|
|
"function": {
|
|
"name": invalid_tool_call["name"],
|
|
"arguments": invalid_tool_call["args"],
|
|
}
|
|
}
|
|
if _id := invalid_tool_call.get("id"):
|
|
result["id"] = _id
|
|
|
|
return result
|
|
|
|
|
|
def _convert_message_to_mistral_chat_message(
|
|
message: BaseMessage,
|
|
) -> Dict:
|
|
if isinstance(message, ChatMessage):
|
|
return dict(role=message.role, content=message.content)
|
|
elif isinstance(message, HumanMessage):
|
|
return dict(role="user", content=message.content)
|
|
elif isinstance(message, AIMessage):
|
|
tool_calls = []
|
|
if message.tool_calls or message.invalid_tool_calls:
|
|
for tool_call in message.tool_calls:
|
|
tool_calls.append(_format_tool_call_for_mistral(tool_call))
|
|
for invalid_tool_call in message.invalid_tool_calls:
|
|
tool_calls.append(
|
|
_format_invalid_tool_call_for_mistral(invalid_tool_call)
|
|
)
|
|
elif "tool_calls" in message.additional_kwargs:
|
|
for tc in message.additional_kwargs["tool_calls"]:
|
|
chunk = {
|
|
"function": {
|
|
"name": tc["function"]["name"],
|
|
"arguments": tc["function"]["arguments"],
|
|
}
|
|
}
|
|
if _id := tc.get("id"):
|
|
chunk["id"] = _id
|
|
tool_calls.append(chunk)
|
|
else:
|
|
pass
|
|
if tool_calls and message.content:
|
|
# Assistant message must have either content or tool_calls, but not both.
|
|
# Some providers may not support tool_calls in the same message as content.
|
|
# This is done to ensure compatibility with messages from other providers.
|
|
content: Any = ""
|
|
else:
|
|
content = message.content
|
|
return {
|
|
"role": "assistant",
|
|
"content": content,
|
|
"tool_calls": tool_calls,
|
|
}
|
|
elif isinstance(message, SystemMessage):
|
|
return dict(role="system", content=message.content)
|
|
elif isinstance(message, ToolMessage):
|
|
return {
|
|
"role": "tool",
|
|
"content": message.content,
|
|
"name": message.name,
|
|
}
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
|
|
class ChatMistralAI(BaseChatModel):
|
|
"""A chat model that uses the MistralAI API."""
|
|
|
|
client: httpx.Client = Field(default=None) #: :meta private:
|
|
async_client: httpx.AsyncClient = Field(default=None) #: :meta private:
|
|
mistral_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
|
|
endpoint: str = "https://api.mistral.ai/v1"
|
|
max_retries: int = 5
|
|
timeout: int = 120
|
|
max_concurrent_requests: int = 64
|
|
model: str = Field(default="mistral-small", alias="model_name")
|
|
temperature: float = 0.7
|
|
max_tokens: Optional[int] = None
|
|
top_p: float = 1
|
|
"""Decode using nucleus sampling: consider the smallest set of tokens whose
|
|
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
|
|
random_seed: Optional[int] = None
|
|
safe_mode: bool = False
|
|
streaming: bool = False
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling the API."""
|
|
defaults = {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
"top_p": self.top_p,
|
|
"random_seed": self.random_seed,
|
|
"safe_prompt": self.safe_mode,
|
|
}
|
|
filtered = {k: v for k, v in defaults.items() if v is not None}
|
|
return filtered
|
|
|
|
@property
|
|
def _client_params(self) -> Dict[str, Any]:
|
|
"""Get the parameters used for the client."""
|
|
return self._default_params
|
|
|
|
def completion_with_retry(
|
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
# retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
|
|
|
# @retry_decorator
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
if "stream" not in kwargs:
|
|
kwargs["stream"] = False
|
|
stream = kwargs["stream"]
|
|
if stream:
|
|
|
|
def iter_sse() -> Iterator[Dict]:
|
|
with connect_sse(
|
|
self.client, "POST", "/chat/completions", json=kwargs
|
|
) as event_source:
|
|
_raise_on_error(event_source.response)
|
|
for event in event_source.iter_sse():
|
|
if event.data == "[DONE]":
|
|
return
|
|
yield event.json()
|
|
|
|
return iter_sse()
|
|
else:
|
|
response = self.client.post(url="/chat/completions", json=kwargs)
|
|
_raise_on_error(response)
|
|
return response.json()
|
|
|
|
rtn = _completion_with_retry(**kwargs)
|
|
return rtn
|
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
|
overall_token_usage: dict = {}
|
|
for output in llm_outputs:
|
|
if output is None:
|
|
# Happens in streaming
|
|
continue
|
|
token_usage = output["token_usage"]
|
|
if token_usage is not None:
|
|
for k, v in token_usage.items():
|
|
if k in overall_token_usage:
|
|
overall_token_usage[k] += v
|
|
else:
|
|
overall_token_usage[k] = v
|
|
combined = {"token_usage": overall_token_usage, "model_name": self.model}
|
|
return combined
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate api key, python package exists, temperature, and top_p."""
|
|
|
|
values["mistral_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values, "mistral_api_key", "MISTRAL_API_KEY", default=""
|
|
)
|
|
)
|
|
api_key_str = values["mistral_api_key"].get_secret_value()
|
|
# todo: handle retries
|
|
values["client"] = httpx.Client(
|
|
base_url=values["endpoint"],
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Accept": "application/json",
|
|
"Authorization": f"Bearer {api_key_str}",
|
|
},
|
|
timeout=values["timeout"],
|
|
)
|
|
# todo: handle retries and max_concurrency
|
|
values["async_client"] = httpx.AsyncClient(
|
|
base_url=values["endpoint"],
|
|
headers={
|
|
"Content-Type": "application/json",
|
|
"Accept": "application/json",
|
|
"Authorization": f"Bearer {api_key_str}",
|
|
},
|
|
timeout=values["timeout"],
|
|
)
|
|
|
|
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
|
|
raise ValueError("temperature must be in the range [0.0, 1.0]")
|
|
|
|
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
|
|
raise ValueError("top_p must be in the range [0.0, 1.0]")
|
|
|
|
return values
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = self.completion_with_retry(
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
)
|
|
return self._create_chat_result(response)
|
|
|
|
def _create_chat_result(self, response: Dict) -> ChatResult:
|
|
generations = []
|
|
for res in response["choices"]:
|
|
finish_reason = res.get("finish_reason")
|
|
gen = ChatGeneration(
|
|
message=_convert_mistral_chat_message_to_message(res["message"]),
|
|
generation_info={"finish_reason": finish_reason},
|
|
)
|
|
generations.append(gen)
|
|
token_usage = response.get("usage", {})
|
|
|
|
llm_output = {"token_usage": token_usage, "model": self.model}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
) -> Tuple[List[Dict], Dict[str, Any]]:
|
|
params = self._client_params
|
|
if stop is not None or "stop" in params:
|
|
if "stop" in params:
|
|
params.pop("stop")
|
|
logger.warning(
|
|
"Parameter `stop` not yet supported (https://docs.mistral.ai/api)"
|
|
)
|
|
message_dicts = [_convert_message_to_mistral_chat_message(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
|
|
for chunk in self.completion_with_retry(
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
):
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
delta = chunk["choices"][0]["delta"]
|
|
new_chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
# make future chunks same type as first chunk
|
|
default_chunk_class = new_chunk.__class__
|
|
gen_chunk = ChatGenerationChunk(message=new_chunk)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(
|
|
token=cast(str, new_chunk.content), chunk=gen_chunk
|
|
)
|
|
yield gen_chunk
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
|
|
async for chunk in await acompletion_with_retry(
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
):
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
delta = chunk["choices"][0]["delta"]
|
|
new_chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
# make future chunks same type as first chunk
|
|
default_chunk_class = new_chunk.__class__
|
|
gen_chunk = ChatGenerationChunk(message=new_chunk)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(
|
|
token=cast(str, new_chunk.content), chunk=gen_chunk
|
|
)
|
|
yield gen_chunk
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else False
|
|
if should_stream:
|
|
stream_iter = self._astream(
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = await acompletion_with_retry(
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
)
|
|
return self._create_chat_result(response)
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
Assumes model is compatible with OpenAI tool-calling API.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
|
models, callables, and BaseTools will be automatically converted to
|
|
their schema dictionary representation.
|
|
tool_choice: Which tool to require the model to call.
|
|
Must be the name of the single provided function or
|
|
"auto" to automatically determine which function to call
|
|
(if any), or a dict of the form:
|
|
{"type": "function", "function": {"name": <<tool_name>>}}.
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
return super().bind(tools=formatted_tools, **kwargs)
|
|
|
|
@beta()
|
|
def with_structured_output(
|
|
self,
|
|
schema: Union[Dict, Type[BaseModel]],
|
|
*,
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the OpenAI function-calling spec.
|
|
include_raw: If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import ChatMistralAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import ChatMistralAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import ChatMistralAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
|
structured_llm = llm.with_structured_output(dict_schema)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel)
|
|
llm = self.bind_tools([schema], tool_choice="any")
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], first_tool_only=True
|
|
)
|
|
else:
|
|
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=key_name, first_tool_only=True
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return self._default_params
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "mistralai-chat"
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"mistral_api_key": "MISTRAL_API_KEY"}
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
return True
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "chat_models", "mistralai"]
|