mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
92 lines
3.4 KiB
Python
92 lines
3.4 KiB
Python
from typing import Any, Dict, List, Literal, Optional, Union
|
|
|
|
from exa_py import Exa # type: ignore
|
|
from exa_py.api import HighlightsContentsOptions, TextContentsOptions # type: ignore
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import SecretStr, root_validator
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
|
from langchain_exa._utilities import initialize_client
|
|
|
|
|
|
def _get_metadata(result: Any) -> Dict[str, Any]:
|
|
"""Get the metadata from a result object."""
|
|
metadata = {
|
|
"title": result.title,
|
|
"url": result.url,
|
|
"id": result.id,
|
|
"score": result.score,
|
|
"published_date": result.published_date,
|
|
"author": result.author,
|
|
}
|
|
if getattr(result, "highlights"):
|
|
metadata["highlights"] = result.highlights
|
|
if getattr(result, "highlight_scores"):
|
|
metadata["highlight_scores"] = result.highlight_scores
|
|
return metadata
|
|
|
|
|
|
class ExaSearchRetriever(BaseRetriever):
|
|
"""Exa Search retriever."""
|
|
|
|
k: int = 10 # num_results
|
|
"""The number of search results to return."""
|
|
include_domains: Optional[List[str]] = None
|
|
"""A list of domains to include in the search."""
|
|
exclude_domains: Optional[List[str]] = None
|
|
"""A list of domains to exclude from the search."""
|
|
start_crawl_date: Optional[str] = None
|
|
"""The start date for the crawl (in YYYY-MM-DD format)."""
|
|
end_crawl_date: Optional[str] = None
|
|
"""The end date for the crawl (in YYYY-MM-DD format)."""
|
|
start_published_date: Optional[str] = None
|
|
"""The start date for when the document was published (in YYYY-MM-DD format)."""
|
|
end_published_date: Optional[str] = None
|
|
"""The end date for when the document was published (in YYYY-MM-DD format)."""
|
|
use_autoprompt: Optional[bool] = None
|
|
"""Whether to use autoprompt for the search."""
|
|
type: str = "neural"
|
|
"""The type of search, 'keyword' or 'neural'. Default: neural"""
|
|
highlights: Optional[Union[HighlightsContentsOptions, bool]] = None
|
|
"""Whether to set the page content to the highlights of the results."""
|
|
text_contents_options: Union[TextContentsOptions, Literal[True]] = True
|
|
"""How to set the page content of the results"""
|
|
|
|
client: Exa
|
|
exa_api_key: SecretStr
|
|
exa_base_url: Optional[str] = None
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate the environment."""
|
|
values = initialize_client(values)
|
|
return values
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
response = self.client.search_and_contents(
|
|
query,
|
|
num_results=self.k,
|
|
text=self.text_contents_options,
|
|
highlights=self.highlights,
|
|
include_domains=self.include_domains,
|
|
exclude_domains=self.exclude_domains,
|
|
start_crawl_date=self.start_crawl_date,
|
|
end_crawl_date=self.end_crawl_date,
|
|
start_published_date=self.start_published_date,
|
|
end_published_date=self.end_published_date,
|
|
use_autoprompt=self.use_autoprompt,
|
|
)
|
|
|
|
results = response.results
|
|
|
|
return [
|
|
Document(
|
|
page_content=(result.text),
|
|
metadata=_get_metadata(result),
|
|
)
|
|
for result in results
|
|
]
|