langchain/templates/rag-pinecone-rerank/rag_pinecone_rerank.ipynb
2023-10-29 15:50:09 -07:00

59 lines
1.5 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "681a5d1e",
"metadata": {},
"source": [
"## Connect to template"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d774be2a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The agent memory consists of two components: short-term memory and long-term memory. The short-term memory is used for in-context learning and allows the model to learn from its experiences. The long-term memory enables the agent to retain and recall an infinite amount of information over extended periods by leveraging an external vector store and fast retrieval.'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langserve.client import RemoteRunnable\n",
"\n",
"rag_app_pinecone = RemoteRunnable(\"http://localhost:8001/rag_pinecone_rerank\")\n",
"rag_app_pinecone.invoke(\"How does agent memory work?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}