mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
59 lines
1.5 KiB
Plaintext
59 lines
1.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "681a5d1e",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Connect to template"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "d774be2a",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'The agent memory consists of two components: short-term memory and long-term memory. The short-term memory is used for in-context learning and allows the model to learn from its experiences. The long-term memory enables the agent to retain and recall an infinite amount of information over extended periods by leveraging an external vector store and fast retrieval.'"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"from langserve.client import RemoteRunnable\n",
|
|
"\n",
|
|
"rag_app_pinecone = RemoteRunnable(\"http://localhost:8001/rag_pinecone_rerank\")\n",
|
|
"rag_app_pinecone.invoke(\"How does agent memory work?\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|