mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
0d294760e7
## Description Fuse HuggingFace Endpoint-related classes into one: - [HuggingFaceHub](5ceaf784f3/libs/community/langchain_community/llms/huggingface_hub.py
) - [HuggingFaceTextGenInference](5ceaf784f3/libs/community/langchain_community/llms/huggingface_text_gen_inference.py
) - and [HuggingFaceEndpoint](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py
) Are fused into - HuggingFaceEndpoint ## Issue The deduplication of classes was creating a lack of clarity, and additional effort to develop classes leads to issues like [this hack](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py (L159)
). ## Dependancies None, this removes dependancies. ## Twitter handle If you want to post about this: @AymericRoucher --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
82 lines
2.9 KiB
Python
82 lines
2.9 KiB
Python
"""Test HuggingFace Endpoints."""
|
|
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
|
|
from langchain_community.llms.loading import load_llm
|
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
|
|
|
|
|
def test_huggingface_endpoint_call_error() -> None:
|
|
"""Test valid call to HuggingFace that errors."""
|
|
llm = HuggingFaceEndpoint(endpoint_url="", model_kwargs={"max_new_tokens": -1})
|
|
with pytest.raises(ValueError):
|
|
llm("Say foo:")
|
|
|
|
|
|
def test_saving_loading_endpoint_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an HuggingFaceHub LLM."""
|
|
llm = HuggingFaceEndpoint(
|
|
endpoint_url="", task="text-generation", model_kwargs={"max_new_tokens": 10}
|
|
)
|
|
llm.save(file_path=tmp_path / "hf.yaml")
|
|
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
|
assert_llm_equality(llm, loaded_llm)
|
|
|
|
|
|
def test_huggingface_text_generation() -> None:
|
|
"""Test valid call to HuggingFace text generation model."""
|
|
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
|
|
output = llm("Say foo:")
|
|
print(output) # noqa: T201
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_text2text_generation() -> None:
|
|
"""Test valid call to HuggingFace text2text model."""
|
|
llm = HuggingFaceEndpoint(repo_id="google/flan-t5-xl")
|
|
output = llm("The capital of New York is")
|
|
assert output == "Albany"
|
|
|
|
|
|
def test_huggingface_summarization() -> None:
|
|
"""Test valid call to HuggingFace summarization model."""
|
|
llm = HuggingFaceEndpoint(repo_id="facebook/bart-large-cnn")
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_call_error() -> None:
|
|
"""Test valid call to HuggingFace that errors."""
|
|
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": -1})
|
|
with pytest.raises(ValueError):
|
|
llm("Say foo:")
|
|
|
|
|
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an HuggingFaceEndpoint LLM."""
|
|
llm = HuggingFaceEndpoint(repo_id="gpt2", model_kwargs={"max_new_tokens": 10})
|
|
llm.save(file_path=tmp_path / "hf.yaml")
|
|
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
|
assert_llm_equality(llm, loaded_llm)
|
|
|
|
|
|
def test_invocation_params_stop_sequences() -> None:
|
|
llm = HuggingFaceEndpoint()
|
|
assert llm._default_params["stop_sequences"] == []
|
|
|
|
runtime_stop = None
|
|
assert llm._invocation_params(runtime_stop)["stop_sequences"] == []
|
|
assert llm._default_params["stop_sequences"] == []
|
|
|
|
runtime_stop = ["stop"]
|
|
assert llm._invocation_params(runtime_stop)["stop_sequences"] == ["stop"]
|
|
assert llm._default_params["stop_sequences"] == []
|
|
|
|
llm = HuggingFaceEndpoint(stop_sequences=["."])
|
|
runtime_stop = ["stop"]
|
|
assert llm._invocation_params(runtime_stop)["stop_sequences"] == [".", "stop"]
|
|
assert llm._default_params["stop_sequences"] == ["."]
|