langchain/libs/partners/mistralai
ZhangShenao 2c3e3dc6b1
patch[Partners] Unified fix of incorrect variable declarations in all check_imports (#25014)
There are some incorrect declarations of variable `has_failure` in
check_imports. The purpose of this PR is to uniformly fix these errors.
2024-08-03 13:49:41 -04:00
..
langchain_mistralai core[patch], integrations[patch]: convert TypedDict to tool schema support (#24641) 2024-07-31 18:27:24 +00:00
scripts patch[Partners] Unified fix of incorrect variable declarations in all check_imports (#25014) 2024-08-03 13:49:41 -04:00
tests mistral[patch]: translate tool call IDs to mistral compatible format (#24668) 2024-07-25 12:39:32 -04:00
.gitignore mistralai: Add langchain-mistralai partner package (#14783) 2023-12-19 10:34:19 -05:00
LICENSE mistralai: Add langchain-mistralai partner package (#14783) 2023-12-19 10:34:19 -05:00
Makefile infra: update mypy 1.10, ruff 0.5 (#23721) 2024-07-03 10:33:27 -07:00
poetry.lock integrations[patch]: release model packages (#24900) 2024-07-31 20:48:20 +00:00
pyproject.toml integrations[patch]: release model packages (#24900) 2024-07-31 20:48:20 +00:00
README.md mistralai[minor]: Add embeddings (#15282) 2024-01-16 17:48:37 -08:00

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])