mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
8e0d5813c2
Import from core instead. Ran: ```bash git grep -l 'from langchain.schema\.output_parser' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.output_parser/from\ langchain_core.output_parsers/g" git grep -l 'from langchain.schema\.messages' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.messages/from\ langchain_core.messages/g" git grep -l 'from langchain.schema\.document' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.document/from\ langchain_core.documents/g" git grep -l 'from langchain.schema\.runnable' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.runnable/from\ langchain_core.runnables/g" git grep -l 'from langchain.schema\.vectorstore' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.vectorstore/from\ langchain_core.vectorstores/g" git grep -l 'from langchain.schema\.language_model' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.language_model/from\ langchain_core.language_models/g" git grep -l 'from langchain.schema\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.embeddings/from\ langchain_core.embeddings/g" git grep -l 'from langchain.schema\.storage' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.storage/from\ langchain_core.stores/g" git checkout master libs/langchain/tests/unit_tests/schema/ make format cd libs/experimental make format cd ../langchain make format ```
297 lines
12 KiB
Python
297 lines
12 KiB
Python
import logging
|
|
import re
|
|
from datetime import datetime
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.chains import LLMChain
|
|
from langchain.prompts import PromptTemplate
|
|
from langchain.retrievers import TimeWeightedVectorStoreRetriever
|
|
from langchain.schema import BaseMemory, Document
|
|
from langchain.utils import mock_now
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class GenerativeAgentMemory(BaseMemory):
|
|
"""Memory for the generative agent."""
|
|
|
|
llm: BaseLanguageModel
|
|
"""The core language model."""
|
|
memory_retriever: TimeWeightedVectorStoreRetriever
|
|
"""The retriever to fetch related memories."""
|
|
verbose: bool = False
|
|
reflection_threshold: Optional[float] = None
|
|
"""When aggregate_importance exceeds reflection_threshold, stop to reflect."""
|
|
current_plan: List[str] = []
|
|
"""The current plan of the agent."""
|
|
# A weight of 0.15 makes this less important than it
|
|
# would be otherwise, relative to salience and time
|
|
importance_weight: float = 0.15
|
|
"""How much weight to assign the memory importance."""
|
|
aggregate_importance: float = 0.0 # : :meta private:
|
|
"""Track the sum of the 'importance' of recent memories.
|
|
|
|
Triggers reflection when it reaches reflection_threshold."""
|
|
|
|
max_tokens_limit: int = 1200 # : :meta private:
|
|
# input keys
|
|
queries_key: str = "queries"
|
|
most_recent_memories_token_key: str = "recent_memories_token"
|
|
add_memory_key: str = "add_memory"
|
|
# output keys
|
|
relevant_memories_key: str = "relevant_memories"
|
|
relevant_memories_simple_key: str = "relevant_memories_simple"
|
|
most_recent_memories_key: str = "most_recent_memories"
|
|
now_key: str = "now"
|
|
reflecting: bool = False
|
|
|
|
def chain(self, prompt: PromptTemplate) -> LLMChain:
|
|
return LLMChain(llm=self.llm, prompt=prompt, verbose=self.verbose)
|
|
|
|
@staticmethod
|
|
def _parse_list(text: str) -> List[str]:
|
|
"""Parse a newline-separated string into a list of strings."""
|
|
lines = re.split(r"\n", text.strip())
|
|
lines = [line for line in lines if line.strip()] # remove empty lines
|
|
return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]
|
|
|
|
def _get_topics_of_reflection(self, last_k: int = 50) -> List[str]:
|
|
"""Return the 3 most salient high-level questions about recent observations."""
|
|
prompt = PromptTemplate.from_template(
|
|
"{observations}\n\n"
|
|
"Given only the information above, what are the 3 most salient "
|
|
"high-level questions we can answer about the subjects in the statements?\n"
|
|
"Provide each question on a new line."
|
|
)
|
|
observations = self.memory_retriever.memory_stream[-last_k:]
|
|
observation_str = "\n".join(
|
|
[self._format_memory_detail(o) for o in observations]
|
|
)
|
|
result = self.chain(prompt).run(observations=observation_str)
|
|
return self._parse_list(result)
|
|
|
|
def _get_insights_on_topic(
|
|
self, topic: str, now: Optional[datetime] = None
|
|
) -> List[str]:
|
|
"""Generate 'insights' on a topic of reflection, based on pertinent memories."""
|
|
prompt = PromptTemplate.from_template(
|
|
"Statements relevant to: '{topic}'\n"
|
|
"---\n"
|
|
"{related_statements}\n"
|
|
"---\n"
|
|
"What 5 high-level novel insights can you infer from the above statements "
|
|
"that are relevant for answering the following question?\n"
|
|
"Do not include any insights that are not relevant to the question.\n"
|
|
"Do not repeat any insights that have already been made.\n\n"
|
|
"Question: {topic}\n\n"
|
|
"(example format: insight (because of 1, 5, 3))\n"
|
|
)
|
|
|
|
related_memories = self.fetch_memories(topic, now=now)
|
|
related_statements = "\n".join(
|
|
[
|
|
self._format_memory_detail(memory, prefix=f"{i+1}. ")
|
|
for i, memory in enumerate(related_memories)
|
|
]
|
|
)
|
|
result = self.chain(prompt).run(
|
|
topic=topic, related_statements=related_statements
|
|
)
|
|
# TODO: Parse the connections between memories and insights
|
|
return self._parse_list(result)
|
|
|
|
def pause_to_reflect(self, now: Optional[datetime] = None) -> List[str]:
|
|
"""Reflect on recent observations and generate 'insights'."""
|
|
if self.verbose:
|
|
logger.info("Character is reflecting")
|
|
new_insights = []
|
|
topics = self._get_topics_of_reflection()
|
|
for topic in topics:
|
|
insights = self._get_insights_on_topic(topic, now=now)
|
|
for insight in insights:
|
|
self.add_memory(insight, now=now)
|
|
new_insights.extend(insights)
|
|
return new_insights
|
|
|
|
def _score_memory_importance(self, memory_content: str) -> float:
|
|
"""Score the absolute importance of the given memory."""
|
|
prompt = PromptTemplate.from_template(
|
|
"On the scale of 1 to 10, where 1 is purely mundane"
|
|
+ " (e.g., brushing teeth, making bed) and 10 is"
|
|
+ " extremely poignant (e.g., a break up, college"
|
|
+ " acceptance), rate the likely poignancy of the"
|
|
+ " following piece of memory. Respond with a single integer."
|
|
+ "\nMemory: {memory_content}"
|
|
+ "\nRating: "
|
|
)
|
|
score = self.chain(prompt).run(memory_content=memory_content).strip()
|
|
if self.verbose:
|
|
logger.info(f"Importance score: {score}")
|
|
match = re.search(r"^\D*(\d+)", score)
|
|
if match:
|
|
return (float(match.group(1)) / 10) * self.importance_weight
|
|
else:
|
|
return 0.0
|
|
|
|
def _score_memories_importance(self, memory_content: str) -> List[float]:
|
|
"""Score the absolute importance of the given memory."""
|
|
prompt = PromptTemplate.from_template(
|
|
"On the scale of 1 to 10, where 1 is purely mundane"
|
|
+ " (e.g., brushing teeth, making bed) and 10 is"
|
|
+ " extremely poignant (e.g., a break up, college"
|
|
+ " acceptance), rate the likely poignancy of the"
|
|
+ " following piece of memory. Always answer with only a list of numbers."
|
|
+ " If just given one memory still respond in a list."
|
|
+ " Memories are separated by semi colans (;)"
|
|
+ "\Memories: {memory_content}"
|
|
+ "\nRating: "
|
|
)
|
|
scores = self.chain(prompt).run(memory_content=memory_content).strip()
|
|
|
|
if self.verbose:
|
|
logger.info(f"Importance scores: {scores}")
|
|
|
|
# Split into list of strings and convert to floats
|
|
scores_list = [float(x) for x in scores.split(";")]
|
|
|
|
return scores_list
|
|
|
|
def add_memories(
|
|
self, memory_content: str, now: Optional[datetime] = None
|
|
) -> List[str]:
|
|
"""Add an observations or memories to the agent's memory."""
|
|
importance_scores = self._score_memories_importance(memory_content)
|
|
|
|
self.aggregate_importance += max(importance_scores)
|
|
memory_list = memory_content.split(";")
|
|
documents = []
|
|
|
|
for i in range(len(memory_list)):
|
|
documents.append(
|
|
Document(
|
|
page_content=memory_list[i],
|
|
metadata={"importance": importance_scores[i]},
|
|
)
|
|
)
|
|
|
|
result = self.memory_retriever.add_documents(documents, current_time=now)
|
|
|
|
# After an agent has processed a certain amount of memories (as measured by
|
|
# aggregate importance), it is time to reflect on recent events to add
|
|
# more synthesized memories to the agent's memory stream.
|
|
if (
|
|
self.reflection_threshold is not None
|
|
and self.aggregate_importance > self.reflection_threshold
|
|
and not self.reflecting
|
|
):
|
|
self.reflecting = True
|
|
self.pause_to_reflect(now=now)
|
|
# Hack to clear the importance from reflection
|
|
self.aggregate_importance = 0.0
|
|
self.reflecting = False
|
|
return result
|
|
|
|
def add_memory(
|
|
self, memory_content: str, now: Optional[datetime] = None
|
|
) -> List[str]:
|
|
"""Add an observation or memory to the agent's memory."""
|
|
importance_score = self._score_memory_importance(memory_content)
|
|
self.aggregate_importance += importance_score
|
|
document = Document(
|
|
page_content=memory_content, metadata={"importance": importance_score}
|
|
)
|
|
result = self.memory_retriever.add_documents([document], current_time=now)
|
|
|
|
# After an agent has processed a certain amount of memories (as measured by
|
|
# aggregate importance), it is time to reflect on recent events to add
|
|
# more synthesized memories to the agent's memory stream.
|
|
if (
|
|
self.reflection_threshold is not None
|
|
and self.aggregate_importance > self.reflection_threshold
|
|
and not self.reflecting
|
|
):
|
|
self.reflecting = True
|
|
self.pause_to_reflect(now=now)
|
|
# Hack to clear the importance from reflection
|
|
self.aggregate_importance = 0.0
|
|
self.reflecting = False
|
|
return result
|
|
|
|
def fetch_memories(
|
|
self, observation: str, now: Optional[datetime] = None
|
|
) -> List[Document]:
|
|
"""Fetch related memories."""
|
|
if now is not None:
|
|
with mock_now(now):
|
|
return self.memory_retriever.get_relevant_documents(observation)
|
|
else:
|
|
return self.memory_retriever.get_relevant_documents(observation)
|
|
|
|
def format_memories_detail(self, relevant_memories: List[Document]) -> str:
|
|
content = []
|
|
for mem in relevant_memories:
|
|
content.append(self._format_memory_detail(mem, prefix="- "))
|
|
return "\n".join([f"{mem}" for mem in content])
|
|
|
|
def _format_memory_detail(self, memory: Document, prefix: str = "") -> str:
|
|
created_time = memory.metadata["created_at"].strftime("%B %d, %Y, %I:%M %p")
|
|
return f"{prefix}[{created_time}] {memory.page_content.strip()}"
|
|
|
|
def format_memories_simple(self, relevant_memories: List[Document]) -> str:
|
|
return "; ".join([f"{mem.page_content}" for mem in relevant_memories])
|
|
|
|
def _get_memories_until_limit(self, consumed_tokens: int) -> str:
|
|
"""Reduce the number of tokens in the documents."""
|
|
result = []
|
|
for doc in self.memory_retriever.memory_stream[::-1]:
|
|
if consumed_tokens >= self.max_tokens_limit:
|
|
break
|
|
consumed_tokens += self.llm.get_num_tokens(doc.page_content)
|
|
if consumed_tokens < self.max_tokens_limit:
|
|
result.append(doc)
|
|
return self.format_memories_simple(result)
|
|
|
|
@property
|
|
def memory_variables(self) -> List[str]:
|
|
"""Input keys this memory class will load dynamically."""
|
|
return []
|
|
|
|
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
|
|
"""Return key-value pairs given the text input to the chain."""
|
|
queries = inputs.get(self.queries_key)
|
|
now = inputs.get(self.now_key)
|
|
if queries is not None:
|
|
relevant_memories = [
|
|
mem for query in queries for mem in self.fetch_memories(query, now=now)
|
|
]
|
|
return {
|
|
self.relevant_memories_key: self.format_memories_detail(
|
|
relevant_memories
|
|
),
|
|
self.relevant_memories_simple_key: self.format_memories_simple(
|
|
relevant_memories
|
|
),
|
|
}
|
|
|
|
most_recent_memories_token = inputs.get(self.most_recent_memories_token_key)
|
|
if most_recent_memories_token is not None:
|
|
return {
|
|
self.most_recent_memories_key: self._get_memories_until_limit(
|
|
most_recent_memories_token
|
|
)
|
|
}
|
|
return {}
|
|
|
|
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, Any]) -> None:
|
|
"""Save the context of this model run to memory."""
|
|
# TODO: fix the save memory key
|
|
mem = outputs.get(self.add_memory_key)
|
|
now = outputs.get(self.now_key)
|
|
if mem:
|
|
self.add_memory(mem, now=now)
|
|
|
|
def clear(self) -> None:
|
|
"""Clear memory contents."""
|
|
# TODO
|