langchain/libs/community/langchain_community/chat_models/ollama.py
Lance Martin 42421860bc
Add image support for Ollama (#14713)
Support [LLaVA](https://ollama.ai/library/llava):
* Upgrade Ollama
* `ollama pull llava`

Ensure compatibility with [image prompt
template](https://github.com/langchain-ai/langchain/pull/14263)

---------

Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
2023-12-15 16:00:55 -08:00

260 lines
9.4 KiB
Python

import json
from typing import Any, Dict, Iterator, List, Optional, Union
from langchain_core._api import deprecated
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_community.llms.ollama import OllamaEndpointNotFoundError, _OllamaCommon
@deprecated("0.0.3", alternative="_chat_stream_response_to_chat_generation_chunk")
def _stream_response_to_chat_generation_chunk(
stream_response: str,
) -> ChatGenerationChunk:
"""Convert a stream response to a generation chunk."""
parsed_response = json.loads(stream_response)
generation_info = parsed_response if parsed_response.get("done") is True else None
return ChatGenerationChunk(
message=AIMessageChunk(content=parsed_response.get("response", "")),
generation_info=generation_info,
)
def _chat_stream_response_to_chat_generation_chunk(
stream_response: str,
) -> ChatGenerationChunk:
"""Convert a stream response to a generation chunk."""
parsed_response = json.loads(stream_response)
generation_info = parsed_response if parsed_response.get("done") is True else None
return ChatGenerationChunk(
message=AIMessageChunk(
content=parsed_response.get("message", {}).get("content", "")
),
generation_info=generation_info,
)
class ChatOllama(BaseChatModel, _OllamaCommon):
"""Ollama locally runs large language models.
To use, follow the instructions at https://ollama.ai/.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOllama
ollama = ChatOllama(model="llama2")
"""
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "ollama-chat"
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return False
@deprecated("0.0.3", alternative="_convert_messages_to_ollama_messages")
def _format_message_as_text(self, message: BaseMessage) -> str:
if isinstance(message, ChatMessage):
message_text = f"\n\n{message.role.capitalize()}: {message.content}"
elif isinstance(message, HumanMessage):
if message.content[0].get("type") == "text":
message_text = f"[INST] {message.content[0]['text']} [/INST]"
elif message.content[0].get("type") == "image_url":
message_text = message.content[0]["image_url"]["url"]
elif isinstance(message, AIMessage):
message_text = f"{message.content}"
elif isinstance(message, SystemMessage):
message_text = f"<<SYS>> {message.content} <</SYS>>"
else:
raise ValueError(f"Got unknown type {message}")
return message_text
def _format_messages_as_text(self, messages: List[BaseMessage]) -> str:
return "\n".join(
[self._format_message_as_text(message) for message in messages]
)
def _convert_messages_to_ollama_messages(
self, messages: List[BaseMessage]
) -> List[Dict[str, Union[str, List[str]]]]:
ollama_messages = []
for message in messages:
role = ""
if isinstance(message, HumanMessage):
role = "user"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, SystemMessage):
role = "system"
else:
raise ValueError("Received unsupported message type for Ollama.")
content = ""
images = []
if isinstance(message.content, str):
content = message.content
else:
for content_part in message.content:
if content_part.get("type") == "text":
content += f"\n{content_part['text']}"
elif content_part.get("type") == "image_url":
if isinstance(content_part.get("image_url"), str):
image_url_components = content_part["image_url"].split(",")
# Support data:image/jpeg;base64,<image> format
# and base64 strings
if len(image_url_components) > 1:
images.append(image_url_components[1])
else:
images.append(image_url_components[0])
else:
raise ValueError(
"Only string image_url " "content parts are supported."
)
else:
raise ValueError(
"Unsupported message content type. "
"Must either have type 'text' or type 'image_url' "
"with a string 'image_url' field."
)
ollama_messages.append(
{
"role": role,
"content": content,
"images": images,
}
)
return ollama_messages
def _create_chat_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Iterator[str]:
payload = {
"messages": self._convert_messages_to_ollama_messages(messages),
}
yield from self._create_stream(
payload=payload, stop=stop, api_url=f"{self.base_url}/api/chat/", **kwargs
)
def _chat_stream_with_aggregation(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
verbose: bool = False,
**kwargs: Any,
) -> ChatGenerationChunk:
final_chunk: Optional[ChatGenerationChunk] = None
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _chat_stream_response_to_chat_generation_chunk(stream_resp)
if final_chunk is None:
final_chunk = chunk
else:
final_chunk += chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
verbose=verbose,
)
if final_chunk is None:
raise ValueError("No data received from Ollama stream.")
return final_chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to Ollama's generate endpoint.
Args:
messages: The list of base messages to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
Chat generations from the model
Example:
.. code-block:: python
response = ollama([
HumanMessage(content="Tell me about the history of AI")
])
"""
final_chunk = self._chat_stream_with_aggregation(
messages,
stop=stop,
run_manager=run_manager,
verbose=self.verbose,
**kwargs,
)
chat_generation = ChatGeneration(
message=AIMessage(content=final_chunk.text),
generation_info=final_chunk.generation_info,
)
return ChatResult(generations=[chat_generation])
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
try:
for stream_resp in self._create_chat_stream(messages, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_chat_generation_chunk(stream_resp)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
verbose=self.verbose,
)
except OllamaEndpointNotFoundError:
yield from self._legacy_stream(messages, stop, **kwargs)
@deprecated("0.0.3", alternative="_stream")
def _legacy_stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
prompt = self._format_messages_as_text(messages)
for stream_resp in self._create_generate_stream(prompt, stop, **kwargs):
if stream_resp:
chunk = _stream_response_to_chat_generation_chunk(stream_resp)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
verbose=self.verbose,
)