mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
140 lines
4.5 KiB
Python
140 lines
4.5 KiB
Python
"""Test Bedrock chat model."""
|
|
from typing import Any
|
|
|
|
import pytest
|
|
from langchain_core.callbacks import CallbackManager
|
|
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
|
|
from langchain_community.chat_models import BedrockChat
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
@pytest.fixture
|
|
def chat() -> BedrockChat:
|
|
return BedrockChat(model_id="anthropic.claude-v2", model_kwargs={"temperature": 0})
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock(chat: BedrockChat) -> None:
|
|
"""Test BedrockChat wrapper."""
|
|
system = SystemMessage(content="You are a helpful assistant.")
|
|
human = HumanMessage(content="Hello")
|
|
response = chat([system, human])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock_generate(chat: BedrockChat) -> None:
|
|
"""Test BedrockChat wrapper with generate."""
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = BedrockChat(
|
|
model_id="anthropic.claude-v2",
|
|
streaming=True,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_bedrock_streaming_generation_info() -> None:
|
|
"""Test that generation info is preserved when streaming."""
|
|
|
|
class _FakeCallback(FakeCallbackHandler):
|
|
saved_things: dict = {}
|
|
|
|
def on_llm_end(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
# Save the generation
|
|
self.saved_things["generation"] = args[0]
|
|
|
|
callback = _FakeCallback()
|
|
callback_manager = CallbackManager([callback])
|
|
chat = BedrockChat(
|
|
model_id="anthropic.claude-v2",
|
|
callback_manager=callback_manager,
|
|
)
|
|
list(chat.stream("hi"))
|
|
generation = callback.saved_things["generation"]
|
|
# `Hello!` is two tokens, assert that that is what is returned
|
|
assert generation.generations[0][0].text == " Hello!"
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_bedrock_streaming(chat: BedrockChat) -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
|
|
for token in chat.stream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_astream(chat: BedrockChat) -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
|
|
async for token in chat.astream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_abatch(chat: BedrockChat) -> None:
|
|
"""Test streaming tokens from BedrockChat."""
|
|
result = await chat.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_abatch_tags(chat: BedrockChat) -> None:
|
|
"""Test batch tokens from BedrockChat."""
|
|
result = await chat.abatch(
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
)
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_bedrock_batch(chat: BedrockChat) -> None:
|
|
"""Test batch tokens from BedrockChat."""
|
|
result = chat.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_bedrock_ainvoke(chat: BedrockChat) -> None:
|
|
"""Test invoke tokens from BedrockChat."""
|
|
result = await chat.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_bedrock_invoke(chat: BedrockChat) -> None:
|
|
"""Test invoke tokens from BedrockChat."""
|
|
result = chat.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
assert isinstance(result.content, str)
|