langchain/templates/rag-vectara/rag_vectara/chain.py
Ofer Mendelevitch ce21308f29
Vectara RAG template (#12975)
- **Description:** RAG template using Vectara
  - **Twitter handle:** @ofermend
2023-11-06 19:24:00 -08:00

50 lines
1.6 KiB
Python

import os
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
from langchain.vectorstores import Vectara
if os.environ.get("VECTARA_CUSTOMER_ID", None) is None:
raise Exception("Missing `VECTARA_CUSTOMER_ID` environment variable.")
if os.environ.get("VECTARA_CORPUS_ID", None) is None:
raise Exception("Missing `VECTARA_CORPUS_ID` environment variable.")
if os.environ.get("VECTARA_API_KEY", None) is None:
raise Exception("Missing `VECTARA_API_KEY` environment variable.")
# If you want to ingest data then use this code.
# Note that no document chunking is needed, as this is
# done efficiently in the Vectara backend.
# loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
# docs = loader.load()
# vec_store = Vectara.from_document(docs)
# retriever = vec_store.as_retriever()
# Otherwise, if data is already loaded into Vectara then use this code:
retriever = Vectara().as_retriever()
# RAG prompt
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
# RAG
model = ChatOpenAI()
chain = (
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
| prompt
| model
| StrOutputParser()
)
# Add typing for input
class Question(BaseModel):
__root__: str
chain = chain.with_types(input_type=Question)