mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
212 lines
7.4 KiB
Python
212 lines
7.4 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
|
|
from langchain_community.llms.sagemaker_endpoint import ContentHandlerBase
|
|
|
|
|
|
class EmbeddingsContentHandler(ContentHandlerBase[List[str], List[List[float]]]):
|
|
"""Content handler for LLM class."""
|
|
|
|
|
|
class SagemakerEndpointEmbeddings(BaseModel, Embeddings):
|
|
"""Custom Sagemaker Inference Endpoints.
|
|
|
|
To use, you must supply the endpoint name from your deployed
|
|
Sagemaker model & the region where it is deployed.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Sagemaker endpoint.
|
|
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
|
|
"""
|
|
|
|
"""
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import SagemakerEndpointEmbeddings
|
|
endpoint_name = (
|
|
"my-endpoint-name"
|
|
)
|
|
region_name = (
|
|
"us-west-2"
|
|
)
|
|
credentials_profile_name = (
|
|
"default"
|
|
)
|
|
se = SagemakerEndpointEmbeddings(
|
|
endpoint_name=endpoint_name,
|
|
region_name=region_name,
|
|
credentials_profile_name=credentials_profile_name
|
|
)
|
|
|
|
#Use with boto3 client
|
|
client = boto3.client(
|
|
"sagemaker-runtime",
|
|
region_name=region_name
|
|
)
|
|
se = SagemakerEndpointEmbeddings(
|
|
endpoint_name=endpoint_name,
|
|
client=client
|
|
)
|
|
"""
|
|
client: Any = None
|
|
|
|
endpoint_name: str = ""
|
|
"""The name of the endpoint from the deployed Sagemaker model.
|
|
Must be unique within an AWS Region."""
|
|
|
|
region_name: str = ""
|
|
"""The aws region where the Sagemaker model is deployed, eg. `us-west-2`."""
|
|
|
|
credentials_profile_name: Optional[str] = None
|
|
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
|
|
has either access keys or role information specified.
|
|
If not specified, the default credential profile or, if on an EC2 instance,
|
|
credentials from IMDS will be used.
|
|
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
"""
|
|
|
|
content_handler: EmbeddingsContentHandler
|
|
"""The content handler class that provides an input and
|
|
output transform functions to handle formats between LLM
|
|
and the endpoint.
|
|
"""
|
|
|
|
"""
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings.sagemaker_endpoint import EmbeddingsContentHandler
|
|
|
|
class ContentHandler(EmbeddingsContentHandler):
|
|
content_type = "application/json"
|
|
accepts = "application/json"
|
|
|
|
def transform_input(self, prompts: List[str], model_kwargs: Dict) -> bytes:
|
|
input_str = json.dumps({prompts: prompts, **model_kwargs})
|
|
return input_str.encode('utf-8')
|
|
|
|
def transform_output(self, output: bytes) -> List[List[float]]:
|
|
response_json = json.loads(output.read().decode("utf-8"))
|
|
return response_json["vectors"]
|
|
""" # noqa: E501
|
|
|
|
model_kwargs: Optional[Dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
endpoint_kwargs: Optional[Dict] = None
|
|
"""Optional attributes passed to the invoke_endpoint
|
|
function. See `boto3`_. docs for more info.
|
|
.. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>
|
|
"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Dont do anything if client provided externally"""
|
|
if values.get("client") is not None:
|
|
return values
|
|
|
|
"""Validate that AWS credentials to and python package exists in environment."""
|
|
try:
|
|
import boto3
|
|
|
|
try:
|
|
if values["credentials_profile_name"] is not None:
|
|
session = boto3.Session(
|
|
profile_name=values["credentials_profile_name"]
|
|
)
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
values["client"] = session.client(
|
|
"sagemaker-runtime", region_name=values["region_name"]
|
|
)
|
|
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
"profile name are valid."
|
|
) from e
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
return values
|
|
|
|
def _embedding_func(self, texts: List[str]) -> List[List[float]]:
|
|
"""Call out to SageMaker Inference embedding endpoint."""
|
|
# replace newlines, which can negatively affect performance.
|
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
|
_model_kwargs = self.model_kwargs or {}
|
|
_endpoint_kwargs = self.endpoint_kwargs or {}
|
|
|
|
body = self.content_handler.transform_input(texts, _model_kwargs)
|
|
content_type = self.content_handler.content_type
|
|
accepts = self.content_handler.accepts
|
|
|
|
# send request
|
|
try:
|
|
response = self.client.invoke_endpoint(
|
|
EndpointName=self.endpoint_name,
|
|
Body=body,
|
|
ContentType=content_type,
|
|
Accept=accepts,
|
|
**_endpoint_kwargs,
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
|
|
return self.content_handler.transform_output(response["Body"])
|
|
|
|
def embed_documents(
|
|
self, texts: List[str], chunk_size: int = 64
|
|
) -> List[List[float]]:
|
|
"""Compute doc embeddings using a SageMaker Inference Endpoint.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
chunk_size: The chunk size defines how many input texts will
|
|
be grouped together as request. If None, will use the
|
|
chunk size specified by the class.
|
|
|
|
|
|
Returns:
|
|
List of embeddings, one for each text.
|
|
"""
|
|
results = []
|
|
_chunk_size = len(texts) if chunk_size > len(texts) else chunk_size
|
|
for i in range(0, len(texts), _chunk_size):
|
|
response = self._embedding_func(texts[i : i + _chunk_size])
|
|
results.extend(response)
|
|
return results
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
"""Compute query embeddings using a SageMaker inference endpoint.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text.
|
|
"""
|
|
return self._embedding_func([text])[0]
|