langchain/libs/partners/anthropic
Bagatur d96f67b06f
standard-tests[patch]: Update chat model standard tests (#22378)
- Refactor standard test classes to make them easier to configure
- Update openai to support stop_sequences init param
- Update groq to support stop_sequences init param
- Update fireworks to support max_retries init param
- Update ChatModel.bind_tools to type tool_choice
- Update groq to handle tool_choice="any". **this may be controversial**

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-06-17 13:37:41 -07:00
..
langchain_anthropic anthropic[minor]: Adds streaming tool call support for Anthropic (#22687) 2024-06-14 09:14:43 -07:00
scripts
tests standard-tests[patch]: Update chat model standard tests (#22378) 2024-06-17 13:37:41 -07:00
.gitignore
LICENSE
Makefile
poetry.lock infra: bump anthropic mypy 1 (#22373) 2024-06-03 08:21:55 -07:00
pyproject.toml infra: bump anthropic mypy 1 (#22373) 2024-06-03 08:21:55 -07:00
README.md

langchain-anthropic

This package contains the LangChain integration for Anthropic's generative models.

Installation

pip install -U langchain-anthropic

Chat Models

Anthropic recommends using their chat models over text completions.

You can see their recommended models here.

To use, you should have an Anthropic API key configured. Initialize the model as:

from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, HumanMessage

model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0, max_tokens=1024)

Define the input message

message = HumanMessage(content="What is the capital of France?")

Generate a response using the model

response = model.invoke([message])

For a more detailed walkthrough see here.

LLMs (Legacy)

You can use the Claude 2 models for text completions.

from langchain_anthropic import AnthropicLLM

model = AnthropicLLM(model="claude-2.1", temperature=0, max_tokens=1024)
response = model.invoke("The best restaurant in San Francisco is: ")