langchain/libs/community/langchain_community/vectorstores/tencentvectordb.py
Leonid Ganeline 85094cbb3a
docs: community docstring updates (#21040)
Added missed docstrings. Updated docstrings to consistent format.
2024-04-29 17:40:23 -04:00

569 lines
20 KiB
Python

"""Wrapper around the Tencent vector database."""
from __future__ import annotations
import json
import logging
import time
from enum import Enum
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union, cast
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.utils import guard_import
from langchain_core.vectorstores import VectorStore
from langchain_community.vectorstores.utils import maximal_marginal_relevance
logger = logging.getLogger(__name__)
META_FIELD_TYPE_UINT64 = "uint64"
META_FIELD_TYPE_STRING = "string"
META_FIELD_TYPE_ARRAY = "array"
META_FIELD_TYPE_VECTOR = "vector"
META_FIELD_TYPES = [
META_FIELD_TYPE_UINT64,
META_FIELD_TYPE_STRING,
META_FIELD_TYPE_ARRAY,
META_FIELD_TYPE_VECTOR,
]
class ConnectionParams:
"""Tencent vector DB Connection params.
See the following documentation for details:
https://cloud.tencent.com/document/product/1709/95820
Attribute:
url (str) : The access address of the vector database server
that the client needs to connect to.
key (str): API key for client to access the vector database server,
which is used for authentication.
username (str) : Account for client to access the vector database server.
timeout (int) : Request Timeout.
"""
def __init__(self, url: str, key: str, username: str = "root", timeout: int = 10):
self.url = url
self.key = key
self.username = username
self.timeout = timeout
class IndexParams:
"""Tencent vector DB Index params.
See the following documentation for details:
https://cloud.tencent.com/document/product/1709/95826
"""
def __init__(
self,
dimension: int,
shard: int = 1,
replicas: int = 2,
index_type: str = "HNSW",
metric_type: str = "L2",
params: Optional[Dict] = None,
):
self.dimension = dimension
self.shard = shard
self.replicas = replicas
self.index_type = index_type
self.metric_type = metric_type
self.params = params
class MetaField(BaseModel):
"""MetaData Field for Tencent vector DB."""
name: str
description: Optional[str]
data_type: Union[str, Enum]
index: bool = False
def __init__(self, **data: Any) -> None:
super().__init__(**data)
enum = guard_import("tcvectordb.model.enum")
if isinstance(self.data_type, str):
if self.data_type not in META_FIELD_TYPES:
raise ValueError(f"unsupported data_type {self.data_type}")
target = [
fe
for fe in enum.FieldType
if fe.value.lower() == self.data_type.lower()
]
if target:
self.data_type = target[0]
else:
raise ValueError(f"unsupported data_type {self.data_type}")
else:
if self.data_type not in enum.FieldType:
raise ValueError(f"unsupported data_type {self.data_type}")
def translate_filter(
lc_filter: str, allowed_fields: Optional[Sequence[str]] = None
) -> str:
"""Translate LangChain filter to Tencent VectorDB filter.
Args:
lc_filter (str): LangChain filter.
allowed_fields (Optional[Sequence[str]]): Allowed fields for filter.
Returns:
str: Translated filter.
"""
from langchain.chains.query_constructor.base import fix_filter_directive
from langchain.chains.query_constructor.parser import get_parser
from langchain.retrievers.self_query.tencentvectordb import (
TencentVectorDBTranslator,
)
from langchain_core.structured_query import FilterDirective
tvdb_visitor = TencentVectorDBTranslator(allowed_fields)
flt = cast(
Optional[FilterDirective],
get_parser(
allowed_comparators=tvdb_visitor.allowed_comparators,
allowed_operators=tvdb_visitor.allowed_operators,
allowed_attributes=allowed_fields,
).parse(lc_filter),
)
flt = fix_filter_directive(flt)
return flt.accept(tvdb_visitor) if flt else ""
class TencentVectorDB(VectorStore):
"""Tencent VectorDB as a vector store.
In order to use this you need to have a database instance.
See the following documentation for details:
https://cloud.tencent.com/document/product/1709/94951
"""
field_id: str = "id"
field_vector: str = "vector"
field_text: str = "text"
field_metadata: str = "metadata"
def __init__(
self,
embedding: Embeddings,
connection_params: ConnectionParams,
index_params: IndexParams = IndexParams(768),
database_name: str = "LangChainDatabase",
collection_name: str = "LangChainCollection",
drop_old: Optional[bool] = False,
collection_description: Optional[str] = "Collection for LangChain",
meta_fields: Optional[List[MetaField]] = None,
t_vdb_embedding: Optional[str] = "bge-base-zh",
):
self.document = guard_import("tcvectordb.model.document")
tcvectordb = guard_import("tcvectordb")
tcollection = guard_import("tcvectordb.model.collection")
enum = guard_import("tcvectordb.model.enum")
if t_vdb_embedding:
embedding_model = [
model
for model in enum.EmbeddingModel
if t_vdb_embedding == model.model_name
]
if not any(embedding_model):
raise ValueError(
f"embedding model `{t_vdb_embedding}` is invalid. "
f"choices: {[member.model_name for member in enum.EmbeddingModel]}"
)
self.embedding_model = tcollection.Embedding(
vector_field="vector", field="text", model=embedding_model[0]
)
self.embedding_func = embedding
self.index_params = index_params
self.collection_description = collection_description
self.vdb_client = tcvectordb.VectorDBClient(
url=connection_params.url,
username=connection_params.username,
key=connection_params.key,
timeout=connection_params.timeout,
)
self.meta_fields = meta_fields
db_list = self.vdb_client.list_databases()
db_exist: bool = False
for db in db_list:
if database_name == db.database_name:
db_exist = True
break
if db_exist:
self.database = self.vdb_client.database(database_name)
else:
self.database = self.vdb_client.create_database(database_name)
try:
self.collection = self.database.describe_collection(collection_name)
if drop_old:
self.database.drop_collection(collection_name)
self._create_collection(collection_name)
except tcvectordb.exceptions.VectorDBException:
self._create_collection(collection_name)
def _create_collection(self, collection_name: str) -> None:
enum = guard_import("tcvectordb.model.enum")
vdb_index = guard_import("tcvectordb.model.index")
index_type = enum.IndexType.__members__.get(self.index_params.index_type)
if index_type is None:
raise ValueError("unsupported index_type")
metric_type = enum.MetricType.__members__.get(self.index_params.metric_type)
if metric_type is None:
raise ValueError("unsupported metric_type")
params = vdb_index.HNSWParams(
m=(self.index_params.params or {}).get("M", 16),
efconstruction=(self.index_params.params or {}).get("efConstruction", 200),
)
index = vdb_index.Index(
vdb_index.FilterIndex(
self.field_id, enum.FieldType.String, enum.IndexType.PRIMARY_KEY
),
vdb_index.VectorIndex(
self.field_vector,
self.index_params.dimension,
index_type,
metric_type,
params,
),
vdb_index.FilterIndex(
self.field_text, enum.FieldType.String, enum.IndexType.FILTER
),
)
# Add metadata indexes
if self.meta_fields is not None:
index_meta_fields = [field for field in self.meta_fields if field.index]
for field in index_meta_fields:
ft_index = vdb_index.FilterIndex(
field.name, field.data_type, enum.IndexType.FILTER
)
index.add(ft_index)
else:
index.add(
vdb_index.FilterIndex(
self.field_metadata, enum.FieldType.String, enum.IndexType.FILTER
)
)
self.collection = self.database.create_collection(
name=collection_name,
shard=self.index_params.shard,
replicas=self.index_params.replicas,
description=self.collection_description,
index=index,
embedding=self.embedding_model,
)
@property
def embeddings(self) -> Embeddings:
return self.embedding_func
def delete(
self,
ids: Optional[List[str]] = None,
filter_expr: Optional[str] = None,
**kwargs: Any,
) -> Optional[bool]:
"""Delete documents from the collection."""
delete_attrs = {}
if ids:
delete_attrs["ids"] = ids
if filter_expr:
delete_attrs["filter"] = self.document.Filter(filter_expr)
self.collection.delete(**delete_attrs)
return True
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
connection_params: Optional[ConnectionParams] = None,
index_params: Optional[IndexParams] = None,
database_name: str = "LangChainDatabase",
collection_name: str = "LangChainCollection",
drop_old: Optional[bool] = False,
collection_description: Optional[str] = "Collection for LangChain",
meta_fields: Optional[List[MetaField]] = None,
t_vdb_embedding: Optional[str] = "bge-base-zh",
**kwargs: Any,
) -> TencentVectorDB:
"""Create a collection, indexes it with HNSW, and insert data."""
if len(texts) == 0:
raise ValueError("texts is empty")
if connection_params is None:
raise ValueError("connection_params is empty")
enum = guard_import("tcvectordb.model.enum")
if embedding is None and t_vdb_embedding is None:
raise ValueError("embedding and t_vdb_embedding cannot be both None")
if embedding:
embeddings = embedding.embed_documents(texts[0:1])
dimension = len(embeddings[0])
else:
embedding_model = [
model
for model in enum.EmbeddingModel
if t_vdb_embedding == model.model_name
]
if not any(embedding_model):
raise ValueError(
f"embedding model `{t_vdb_embedding}` is invalid. "
f"choices: {[member.model_name for member in enum.EmbeddingModel]}"
)
dimension = embedding_model[0]._EmbeddingModel__dimensions
if index_params is None:
index_params = IndexParams(dimension=dimension)
else:
index_params.dimension = dimension
vector_db = cls(
embedding=embedding,
connection_params=connection_params,
index_params=index_params,
database_name=database_name,
collection_name=collection_name,
drop_old=drop_old,
collection_description=collection_description,
meta_fields=meta_fields,
t_vdb_embedding=t_vdb_embedding,
)
vector_db.add_texts(texts=texts, metadatas=metadatas)
return vector_db
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
timeout: Optional[int] = None,
batch_size: int = 1000,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Insert text data into TencentVectorDB."""
texts = list(texts)
if len(texts) == 0:
logger.debug("Nothing to insert, skipping.")
return []
if self.embedding_func:
embeddings = self.embedding_func.embed_documents(texts)
else:
embeddings = []
pks: list[str] = []
total_count = len(texts)
for start in range(0, total_count, batch_size):
# Grab end index
docs = []
end = min(start + batch_size, total_count)
for id in range(start, end, 1):
metadata = (
self._get_meta(metadatas[id]) if metadatas and metadatas[id] else {}
)
doc_id = ids[id] if ids else None
doc_attrs: Dict[str, Any] = {
"id": doc_id
or "{}-{}-{}".format(time.time_ns(), hash(texts[id]), id)
}
if embeddings:
doc_attrs["vector"] = embeddings[id]
else:
doc_attrs["text"] = texts[id]
doc_attrs.update(metadata)
doc = self.document.Document(**doc_attrs)
docs.append(doc)
pks.append(doc_attrs["id"])
self.collection.upsert(docs, timeout)
return pks
def similarity_search(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search against the query string."""
res = self.similarity_search_with_score(
query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return [doc for doc, _ in res]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results with score."""
# Embed the query text.
if self.embedding_func:
embedding = self.embedding_func.embed_query(query)
return self.similarity_search_with_score_by_vector(
embedding=embedding,
k=k,
param=param,
expr=expr,
timeout=timeout,
**kwargs,
)
return self.similarity_search_with_score_by_vector(
embedding=[],
k=k,
param=param,
expr=expr,
timeout=timeout,
query=query,
**kwargs,
)
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search against the query string."""
docs = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
)
return [doc for doc, _ in docs]
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
param: Optional[dict] = None,
expr: Optional[str] = None,
filter: Optional[str] = None,
timeout: Optional[int] = None,
query: Optional[str] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Perform a search on a query string and return results with score."""
if filter and not expr:
expr = translate_filter(
filter, [f.name for f in (self.meta_fields or []) if f.index]
)
search_args = {
"filter": self.document.Filter(expr) if expr else None,
"params": self.document.HNSWSearchParams(ef=(param or {}).get("ef", 10)),
"retrieve_vector": False,
"limit": k,
"timeout": timeout,
}
if query:
search_args["embeddingItems"] = [query]
res: List[List[Dict]] = self.collection.searchByText(**search_args).get(
"documents"
)
else:
search_args["vectors"] = [embedding]
res = self.collection.search(**search_args)
ret: List[Tuple[Document, float]] = []
if res is None or len(res) == 0:
return ret
for result in res[0]:
meta = self._get_meta(result)
doc = Document(page_content=result.get(self.field_text), metadata=meta) # type: ignore[arg-type]
pair = (doc, result.get("score", 0.0))
ret.append(pair)
return ret
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a search and return results that are reordered by MMR."""
if self.embedding_func:
embedding = self.embedding_func.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding=embedding,
k=k,
fetch_k=fetch_k,
lambda_mult=lambda_mult,
param=param,
expr=expr,
timeout=timeout,
**kwargs,
)
# tvdb will do the query embedding
docs = self.similarity_search_with_score(
query=query, k=fetch_k, param=param, expr=expr, timeout=timeout, **kwargs
)
return [doc for doc, _ in docs]
def _get_meta(self, result: Dict) -> Dict:
"""Get metadata from the result."""
if self.meta_fields:
return {field.name: result.get(field.name) for field in self.meta_fields}
elif result.get(self.field_metadata):
raw_meta = result.get(self.field_metadata)
if raw_meta and isinstance(raw_meta, str):
return json.loads(raw_meta)
return {}
def max_marginal_relevance_search_by_vector(
self,
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
param: Optional[dict] = None,
expr: Optional[str] = None,
filter: Optional[str] = None,
timeout: Optional[int] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a search and return results that are reordered by MMR."""
if filter and not expr:
expr = translate_filter(
filter, [f.name for f in (self.meta_fields or []) if f.index]
)
res: List[List[Dict]] = self.collection.search(
vectors=[embedding],
filter=self.document.Filter(expr) if expr else None,
params=self.document.HNSWSearchParams(ef=(param or {}).get("ef", 10)),
retrieve_vector=True,
limit=fetch_k,
timeout=timeout,
)
# Organize results.
documents = []
ordered_result_embeddings = []
for result in res[0]:
meta = self._get_meta(result)
doc = Document(page_content=result.get(self.field_text), metadata=meta) # type: ignore[arg-type]
documents.append(doc)
ordered_result_embeddings.append(result.get(self.field_vector))
# Get the new order of results.
new_ordering = maximal_marginal_relevance(
np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult
)
# Reorder the values and return.
return [documents[x] for x in new_ordering if x != -1]