mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
7cf2d2759d
Added missed docstrings. Format docstings to the consistent form.
75 lines
2.4 KiB
Python
75 lines
2.4 KiB
Python
from __future__ import annotations
|
|
|
|
import warnings
|
|
from typing import Any, Iterator, List, Optional
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
|
|
def _chunk(texts: List[str], size: int) -> Iterator[List[str]]:
|
|
for i in range(0, len(texts), size):
|
|
yield texts[i : i + size]
|
|
|
|
|
|
class MlflowAIGatewayEmbeddings(Embeddings, BaseModel):
|
|
"""MLflow AI Gateway embeddings.
|
|
|
|
To use, you should have the ``mlflow[gateway]`` python package installed.
|
|
For more information, see https://mlflow.org/docs/latest/gateway/index.html.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import MlflowAIGatewayEmbeddings
|
|
|
|
embeddings = MlflowAIGatewayEmbeddings(
|
|
gateway_uri="<your-mlflow-ai-gateway-uri>",
|
|
route="<your-mlflow-ai-gateway-embeddings-route>"
|
|
)
|
|
"""
|
|
|
|
route: str
|
|
"""The route to use for the MLflow AI Gateway API."""
|
|
gateway_uri: Optional[str] = None
|
|
"""The URI for the MLflow AI Gateway API."""
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
warnings.warn(
|
|
"`MlflowAIGatewayEmbeddings` is deprecated. Use `MlflowEmbeddings` or "
|
|
"`DatabricksEmbeddings` instead.",
|
|
DeprecationWarning,
|
|
)
|
|
try:
|
|
import mlflow.gateway
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import `mlflow.gateway` module. "
|
|
"Please install it with `pip install mlflow[gateway]`."
|
|
) from e
|
|
|
|
super().__init__(**kwargs)
|
|
if self.gateway_uri:
|
|
mlflow.gateway.set_gateway_uri(self.gateway_uri)
|
|
|
|
def _query(self, texts: List[str]) -> List[List[float]]:
|
|
try:
|
|
import mlflow.gateway
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Could not import `mlflow.gateway` module. "
|
|
"Please install it with `pip install mlflow[gateway]`."
|
|
) from e
|
|
|
|
embeddings = []
|
|
for txt in _chunk(texts, 20):
|
|
resp = mlflow.gateway.query(self.route, data={"text": txt})
|
|
embeddings.append(resp["embeddings"])
|
|
return embeddings
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
return self._query(texts)
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
return self._query([text])[0]
|