langchain/libs/community/langchain_community/chat_models/baidu_qianfan_endpoint.py
Leonid Ganeline dc7c06bc07
community[minor]: import fix (#20995)
Issue: When the third-party package is not installed, whenever we need
to `pip install <package>` the ImportError is raised.
But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It
is bad for consistency.
Change: replaced the `ValueError` or `ModuleNotFoundError` with
`ImportError` when we raise an error with the `pip install <package>`
message.
Note: Ideally, we replace all `try: import... except... raise ... `with
helper functions like `import_aim` or just use the existing
[langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import)
But it would be much bigger refactoring. @baskaryan Please, advice on
this.
2024-04-29 10:32:50 -04:00

394 lines
14 KiB
Python

import logging
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional, cast
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
logger = logging.getLogger(__name__)
def convert_message_to_dict(message: BaseMessage) -> dict:
"""Convert a message to a dictionary that can be passed to the API."""
message_dict: Dict[str, Any]
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
# If function call only, content is None not empty string
if message_dict["content"] == "":
message_dict["content"] = None
elif isinstance(message, FunctionMessage):
message_dict = {
"role": "function",
"content": message.content,
"name": message.name,
}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> AIMessage:
content = _dict.get("result", "") or ""
additional_kwargs: Mapping[str, Any] = {}
if _dict.get("function_call"):
additional_kwargs = {"function_call": dict(_dict["function_call"])}
if "thoughts" in additional_kwargs["function_call"]:
# align to api sample, which affects the llm function_call output
additional_kwargs["function_call"].pop("thoughts")
additional_kwargs = {**_dict.get("body", {}), **additional_kwargs}
return AIMessage(
content=content,
additional_kwargs=dict(
finish_reason=additional_kwargs.get("finish_reason", ""),
request_id=additional_kwargs["id"],
object=additional_kwargs.get("object", ""),
search_info=additional_kwargs.get("search_info", []),
function_call=additional_kwargs.get("function_call", {}),
),
)
class QianfanChatEndpoint(BaseChatModel):
"""Baidu Qianfan chat models.
To use, you should have the ``qianfan`` python package installed, and
the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with your
API key and Secret Key.
ak, sk are required parameters
which you could get from https://cloud.baidu.com/product/wenxinworkshop
Example:
.. code-block:: python
from langchain_community.chat_models import QianfanChatEndpoint
qianfan_chat = QianfanChatEndpoint(model="ERNIE-Bot",
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
"""
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""init kwargs for qianfan client init, such as `query_per_second` which is
associated with qianfan resource object to limit QPS"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""extra params for model invoke using with `do`."""
client: Any
qianfan_ak: Optional[SecretStr] = None
qianfan_sk: Optional[SecretStr] = None
streaming: Optional[bool] = False
"""Whether to stream the results or not."""
request_timeout: Optional[int] = Field(60, alias="timeout")
"""request timeout for chat http requests"""
top_p: Optional[float] = 0.8
temperature: Optional[float] = 0.95
penalty_score: Optional[float] = 1
"""Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo.
In the case of other model, passing these params will not affect the result.
"""
model: str = "ERNIE-Bot-turbo"
"""Model name.
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
preset models are mapping to an endpoint.
`model` will be ignored if `endpoint` is set.
Default is ERNIE-Bot-turbo.
"""
endpoint: Optional[str] = None
"""Endpoint of the Qianfan LLM, required if custom model used."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["qianfan_ak"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_ak",
"QIANFAN_AK",
default="",
)
)
values["qianfan_sk"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"qianfan_sk",
"QIANFAN_SK",
default="",
)
)
params = {
**values.get("init_kwargs", {}),
"model": values["model"],
"stream": values["streaming"],
}
if values["qianfan_ak"].get_secret_value() != "":
params["ak"] = values["qianfan_ak"].get_secret_value()
if values["qianfan_sk"].get_secret_value() != "":
params["sk"] = values["qianfan_sk"].get_secret_value()
if values["endpoint"] is not None and values["endpoint"] != "":
params["endpoint"] = values["endpoint"]
try:
import qianfan
values["client"] = qianfan.ChatCompletion(**params)
except ImportError:
raise ImportError(
"qianfan package not found, please install it with "
"`pip install qianfan`"
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
return {
**{"endpoint": self.endpoint, "model": self.model},
**super()._identifying_params,
}
@property
def _llm_type(self) -> str:
"""Return type of chat_model."""
return "baidu-qianfan-chat"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Qianfan API."""
normal_params = {
"model": self.model,
"endpoint": self.endpoint,
"stream": self.streaming,
"request_timeout": self.request_timeout,
"top_p": self.top_p,
"temperature": self.temperature,
"penalty_score": self.penalty_score,
}
return {**normal_params, **self.model_kwargs}
def _convert_prompt_msg_params(
self,
messages: List[BaseMessage],
**kwargs: Any,
) -> Dict[str, Any]:
"""
Converts a list of messages into a dictionary containing the message content
and default parameters.
Args:
messages (List[BaseMessage]): The list of messages.
**kwargs (Any): Optional arguments to add additional parameters to the
resulting dictionary.
Returns:
Dict[str, Any]: A dictionary containing the message content and default
parameters.
"""
messages_dict: Dict[str, Any] = {
"messages": [
convert_message_to_dict(m)
for m in messages
if not isinstance(m, SystemMessage)
]
}
for i in [i for i, m in enumerate(messages) if isinstance(m, SystemMessage)]:
if "system" not in messages_dict:
messages_dict["system"] = ""
messages_dict["system"] += cast(str, messages[i].content) + "\n"
return {
**messages_dict,
**self._default_params,
**kwargs,
}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to an qianfan models endpoint for each generation with a prompt.
Args:
messages: The messages to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = qianfan_model.invoke("Tell me a joke.")
"""
if self.streaming:
completion = ""
token_usage = {}
chat_generation_info: Dict = {}
for chunk in self._stream(messages, stop, run_manager, **kwargs):
chat_generation_info = (
chunk.generation_info
if chunk.generation_info is not None
else chat_generation_info
)
completion += chunk.text
lc_msg = AIMessage(content=completion, additional_kwargs={})
gen = ChatGeneration(
message=lc_msg,
generation_info=dict(finish_reason="stop"),
)
return ChatResult(
generations=[gen],
llm_output={
"token_usage": chat_generation_info.get("usage", {}),
"model_name": self.model,
},
)
params = self._convert_prompt_msg_params(messages, **kwargs)
params["stop"] = stop
response_payload = self.client.do(**params)
lc_msg = _convert_dict_to_message(response_payload)
gen = ChatGeneration(
message=lc_msg,
generation_info={
"finish_reason": "stop",
**response_payload.get("body", {}),
},
)
token_usage = response_payload.get("usage", {})
llm_output = {"token_usage": token_usage, "model_name": self.model}
return ChatResult(generations=[gen], llm_output=llm_output)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
completion = ""
token_usage = {}
chat_generation_info: Dict = {}
async for chunk in self._astream(messages, stop, run_manager, **kwargs):
chat_generation_info = (
chunk.generation_info
if chunk.generation_info is not None
else chat_generation_info
)
completion += chunk.text
lc_msg = AIMessage(content=completion, additional_kwargs={})
gen = ChatGeneration(
message=lc_msg,
generation_info=dict(finish_reason="stop"),
)
return ChatResult(
generations=[gen],
llm_output={
"token_usage": chat_generation_info.get("usage", {}),
"model_name": self.model,
},
)
params = self._convert_prompt_msg_params(messages, **kwargs)
params["stop"] = stop
response_payload = await self.client.ado(**params)
lc_msg = _convert_dict_to_message(response_payload)
generations = []
gen = ChatGeneration(
message=lc_msg,
generation_info={
"finish_reason": "stop",
**response_payload.get("body", {}),
},
)
generations.append(gen)
token_usage = response_payload.get("usage", {})
llm_output = {"token_usage": token_usage, "model_name": self.model}
return ChatResult(generations=generations, llm_output=llm_output)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
params = self._convert_prompt_msg_params(messages, **kwargs)
params["stop"] = stop
params["stream"] = True
for res in self.client.do(**params):
if res:
msg = _convert_dict_to_message(res)
additional_kwargs = msg.additional_kwargs.get("function_call", {})
chunk = ChatGenerationChunk(
text=res["result"],
message=AIMessageChunk(
content=msg.content,
role="assistant",
additional_kwargs=additional_kwargs,
),
generation_info=msg.additional_kwargs,
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
params = self._convert_prompt_msg_params(messages, **kwargs)
params["stop"] = stop
params["stream"] = True
async for res in await self.client.ado(**params):
if res:
msg = _convert_dict_to_message(res)
additional_kwargs = msg.additional_kwargs.get("function_call", {})
chunk = ChatGenerationChunk(
text=res["result"],
message=AIMessageChunk(
content=msg.content,
role="assistant",
additional_kwargs=additional_kwargs,
),
generation_info=msg.additional_kwargs,
)
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk