langchain/libs/text-splitters/langchain_text_splitters/html.py

161 lines
5.6 KiB
Python

from __future__ import annotations
import pathlib
from io import BytesIO, StringIO
from typing import Any, Dict, List, Tuple, TypedDict
import requests
from langchain_core.documents import Document
class ElementType(TypedDict):
"""Element type as typed dict."""
url: str
xpath: str
content: str
metadata: Dict[str, str]
class HTMLHeaderTextSplitter:
"""
Splitting HTML files based on specified headers.
Requires lxml package.
"""
def __init__(
self,
headers_to_split_on: List[Tuple[str, str]],
return_each_element: bool = False,
):
"""Create a new HTMLHeaderTextSplitter.
Args:
headers_to_split_on: list of tuples of headers we want to track mapped to
(arbitrary) keys for metadata. Allowed header values: h1, h2, h3, h4,
h5, h6 e.g. [("h1", "Header 1"), ("h2", "Header 2)].
return_each_element: Return each element w/ associated headers.
"""
# Output element-by-element or aggregated into chunks w/ common headers
self.return_each_element = return_each_element
self.headers_to_split_on = sorted(headers_to_split_on)
def aggregate_elements_to_chunks(
self, elements: List[ElementType]
) -> List[Document]:
"""Combine elements with common metadata into chunks
Args:
elements: HTML element content with associated identifying info and metadata
"""
aggregated_chunks: List[ElementType] = []
for element in elements:
if (
aggregated_chunks
and aggregated_chunks[-1]["metadata"] == element["metadata"]
):
# If the last element in the aggregated list
# has the same metadata as the current element,
# append the current content to the last element's content
aggregated_chunks[-1]["content"] += " \n" + element["content"]
else:
# Otherwise, append the current element to the aggregated list
aggregated_chunks.append(element)
return [
Document(page_content=chunk["content"], metadata=chunk["metadata"])
for chunk in aggregated_chunks
]
def split_text_from_url(self, url: str) -> List[Document]:
"""Split HTML from web URL
Args:
url: web URL
"""
r = requests.get(url)
return self.split_text_from_file(BytesIO(r.content))
def split_text(self, text: str) -> List[Document]:
"""Split HTML text string
Args:
text: HTML text
"""
return self.split_text_from_file(StringIO(text))
def split_text_from_file(self, file: Any) -> List[Document]:
"""Split HTML file
Args:
file: HTML file
"""
try:
from lxml import etree
except ImportError as e:
raise ImportError(
"Unable to import lxml, please install with `pip install lxml`."
) from e
# use lxml library to parse html document and return xml ElementTree
# Explicitly encoding in utf-8 allows non-English
# html files to be processed without garbled characters
parser = etree.HTMLParser(encoding="utf-8")
tree = etree.parse(file, parser)
# document transformation for "structure-aware" chunking is handled with xsl.
# see comments in html_chunks_with_headers.xslt for more detailed information.
xslt_path = pathlib.Path(__file__).parent / "xsl/html_chunks_with_headers.xslt"
xslt_tree = etree.parse(xslt_path)
transform = etree.XSLT(xslt_tree)
result = transform(tree)
result_dom = etree.fromstring(str(result))
# create filter and mapping for header metadata
header_filter = [header[0] for header in self.headers_to_split_on]
header_mapping = dict(self.headers_to_split_on)
# map xhtml namespace prefix
ns_map = {"h": "http://www.w3.org/1999/xhtml"}
# build list of elements from DOM
elements = []
for element in result_dom.findall("*//*", ns_map):
if element.findall("*[@class='headers']") or element.findall(
"*[@class='chunk']"
):
elements.append(
ElementType(
url=file,
xpath="".join(
[
node.text or ""
for node in element.findall("*[@class='xpath']", ns_map)
]
),
content="".join(
[
node.text or ""
for node in element.findall("*[@class='chunk']", ns_map)
]
),
metadata={
# Add text of specified headers to metadata using header
# mapping.
header_mapping[node.tag]: node.text or ""
for node in filter(
lambda x: x.tag in header_filter,
element.findall("*[@class='headers']/*", ns_map),
)
},
)
)
if not self.return_each_element:
return self.aggregate_elements_to_chunks(elements)
else:
return [
Document(page_content=chunk["content"], metadata=chunk["metadata"])
for chunk in elements
]