mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
b30f449dae
## Description Add `Dashvector` vectorstore for langchain - [dashvector quick start](https://help.aliyun.com/document_detail/2510223.html) - [dashvector package description](https://pypi.org/project/dashvector/) ## How to use ```python from langchain.vectorstores.dashvector import DashVector dashvector = DashVector.from_documents(docs, embeddings) ``` --------- Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
237 lines
5.2 KiB
Plaintext
237 lines
5.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
},
|
|
"source": [
|
|
"# DashVector\n",
|
|
"\n",
|
|
"> [DashVector](https://help.aliyun.com/document_detail/2510225.html) is a fully-managed vectorDB service that supports high-dimension dense and sparse vectors, real-time insertion and filtered search. It is built to scale automatically and can adapt to different application requirements.\n",
|
|
"\n",
|
|
"This notebook shows how to use functionality related to the `DashVector` vector database.\n",
|
|
"\n",
|
|
"To use DashVector, you must have an API key.\n",
|
|
"Here are the [installation instructions](https://help.aliyun.com/document_detail/2510223.html)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
},
|
|
"source": [
|
|
"## Install"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip install dashvector dashscope"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
},
|
|
"source": [
|
|
"We want to use `DashScopeEmbeddings` so we also have to get the Dashscope API Key."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n",
|
|
"is_executing": true
|
|
},
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-11T10:37:15.091585Z",
|
|
"start_time": "2023-08-11T10:36:51.859753Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import getpass\n",
|
|
"\n",
|
|
"os.environ[\"DASHVECTOR_API_KEY\"] = getpass.getpass(\"DashVector API Key:\")\n",
|
|
"os.environ[\"DASHSCOPE_API_KEY\"] = getpass.getpass(\"DashScope API Key:\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
},
|
|
"source": [
|
|
"## Example"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n",
|
|
"is_executing": true
|
|
},
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-11T10:42:30.243460Z",
|
|
"start_time": "2023-08-11T10:42:27.783785Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.embeddings.dashscope import DashScopeEmbeddings\n",
|
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
|
"from langchain.vectorstores import DashVector"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"pycharm": {
|
|
"is_executing": true,
|
|
"name": "#%%\n"
|
|
},
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-11T10:42:30.391580Z",
|
|
"start_time": "2023-08-11T10:42:30.249021Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import TextLoader\n",
|
|
"\n",
|
|
"loader = TextLoader(\"../../modules/state_of_the_union.txt\")\n",
|
|
"documents = loader.load()\n",
|
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
|
"docs = text_splitter.split_documents(documents)\n",
|
|
"\n",
|
|
"embeddings = DashScopeEmbeddings()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
},
|
|
"source": [
|
|
"We can create DashVector from documents."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"dashvector = DashVector.from_documents(docs, embeddings)\n",
|
|
"\n",
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = dashvector.similarity_search(query)\n",
|
|
"print(docs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%% md\n"
|
|
}
|
|
},
|
|
"source": [
|
|
"We can add texts with meta datas and ids, and search with meta filter."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"pycharm": {
|
|
"name": "#%%\n"
|
|
},
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-11T10:42:51.641309Z",
|
|
"start_time": "2023-08-11T10:42:51.132109Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[Document(page_content='baz', metadata={'key': 2})]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"texts = [\"foo\", \"bar\", \"baz\"]\n",
|
|
"metadatas = [{\"key\": i} for i in range(len(texts))]\n",
|
|
"ids = [\"0\", \"1\", \"2\"]\n",
|
|
"\n",
|
|
"dashvector.add_texts(texts, metadatas=metadatas, ids=ids)\n",
|
|
"\n",
|
|
"docs = dashvector.similarity_search(\"foo\", filter=\"key = 2\")\n",
|
|
"print(docs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"outputs": [],
|
|
"source": [],
|
|
"metadata": {
|
|
"collapsed": false
|
|
}
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|