mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
b2fd41331e
Addded missed docstrings. Fixed inconsistency in docstrings. **Note** CC @efriis There were PR errors on `langchain_experimental/prompt_injection_identifier/hugging_face_identifier.py` But, I didn't touch this file in this PR! Can it be some cache problems? I fixed this error.
129 lines
4.6 KiB
Python
129 lines
4.6 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
|
|
|
class VectorSearchConfig(BaseModel, extra="allow"): # type: ignore[call-arg]
|
|
"""Configuration for vector search."""
|
|
|
|
numberOfResults: int = 4
|
|
|
|
|
|
class RetrievalConfig(BaseModel, extra="allow"): # type: ignore[call-arg]
|
|
"""Configuration for retrieval."""
|
|
|
|
vectorSearchConfiguration: VectorSearchConfig
|
|
|
|
|
|
class AmazonKnowledgeBasesRetriever(BaseRetriever):
|
|
"""`Amazon Bedrock Knowledge Bases` retrieval.
|
|
|
|
See https://aws.amazon.com/bedrock/knowledge-bases for more info.
|
|
|
|
Args:
|
|
knowledge_base_id: Knowledge Base ID.
|
|
region_name: The aws region e.g., `us-west-2`.
|
|
Fallback to AWS_DEFAULT_REGION env variable or region specified in
|
|
~/.aws/config.
|
|
credentials_profile_name: The name of the profile in the ~/.aws/credentials
|
|
or ~/.aws/config files, which has either access keys or role information
|
|
specified. If not specified, the default credential profile or, if on an
|
|
EC2 instance, credentials from IMDS will be used.
|
|
client: boto3 client for bedrock agent runtime.
|
|
retrieval_config: Configuration for retrieval.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.retrievers import AmazonKnowledgeBasesRetriever
|
|
|
|
retriever = AmazonKnowledgeBasesRetriever(
|
|
knowledge_base_id="<knowledge-base-id>",
|
|
retrieval_config={
|
|
"vectorSearchConfiguration": {
|
|
"numberOfResults": 4
|
|
}
|
|
},
|
|
)
|
|
"""
|
|
|
|
knowledge_base_id: str
|
|
region_name: Optional[str] = None
|
|
credentials_profile_name: Optional[str] = None
|
|
endpoint_url: Optional[str] = None
|
|
client: Any
|
|
retrieval_config: RetrievalConfig
|
|
|
|
@root_validator(pre=True)
|
|
def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
if values.get("client") is not None:
|
|
return values
|
|
|
|
try:
|
|
import boto3
|
|
from botocore.client import Config
|
|
from botocore.exceptions import UnknownServiceError
|
|
|
|
if values.get("credentials_profile_name"):
|
|
session = boto3.Session(profile_name=values["credentials_profile_name"])
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
client_params = {
|
|
"config": Config(
|
|
connect_timeout=120, read_timeout=120, retries={"max_attempts": 0}
|
|
)
|
|
}
|
|
if values.get("region_name"):
|
|
client_params["region_name"] = values["region_name"]
|
|
|
|
if values.get("endpoint_url"):
|
|
client_params["endpoint_url"] = values["endpoint_url"]
|
|
|
|
values["client"] = session.client("bedrock-agent-runtime", **client_params)
|
|
|
|
return values
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
except UnknownServiceError as e:
|
|
raise ModuleNotFoundError(
|
|
"Ensure that you have installed the latest boto3 package "
|
|
"that contains the API for `bedrock-runtime-agent`."
|
|
) from e
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
"profile name are valid."
|
|
) from e
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
response = self.client.retrieve(
|
|
retrievalQuery={"text": query.strip()},
|
|
knowledgeBaseId=self.knowledge_base_id,
|
|
retrievalConfiguration=self.retrieval_config.dict(),
|
|
)
|
|
results = response["retrievalResults"]
|
|
documents = []
|
|
for result in results:
|
|
documents.append(
|
|
Document(
|
|
page_content=result["content"]["text"],
|
|
metadata={
|
|
"location": result["location"],
|
|
"score": result["score"] if "score" in result else 0,
|
|
},
|
|
)
|
|
)
|
|
|
|
return documents
|