mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
7773943a51
- **Description:** - support custom kwargs in object initialization. For instantance, QPS differs from multiple object(chat/completion/embedding with diverse models), for which global env is not a good choice for configuration. - **Issue:** no - **Dependencies:** no - **Twitter handle:** no @baskaryan PTAL
235 lines
7.4 KiB
Python
235 lines
7.4 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.pydantic_v1 import Field, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class QianfanLLMEndpoint(LLM):
|
|
"""Baidu Qianfan hosted open source or customized models.
|
|
|
|
To use, you should have the ``qianfan`` python package installed, and
|
|
the environment variable ``qianfan_ak`` and ``qianfan_sk`` set with
|
|
your API key and Secret Key.
|
|
|
|
ak, sk are required parameters which you could get from
|
|
https://cloud.baidu.com/product/wenxinworkshop
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import QianfanLLMEndpoint
|
|
qianfan_model = QianfanLLMEndpoint(model="ERNIE-Bot",
|
|
endpoint="your_endpoint", qianfan_ak="your_ak", qianfan_sk="your_sk")
|
|
"""
|
|
|
|
init_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""init kwargs for qianfan client init, such as `query_per_second` which is
|
|
associated with qianfan resource object to limit QPS"""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""extra params for model invoke using with `do`."""
|
|
|
|
client: Any
|
|
|
|
qianfan_ak: Optional[str] = None
|
|
qianfan_sk: Optional[str] = None
|
|
|
|
streaming: Optional[bool] = False
|
|
"""Whether to stream the results or not."""
|
|
|
|
model: str = "ERNIE-Bot-turbo"
|
|
"""Model name.
|
|
you could get from https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Nlks5zkzu
|
|
|
|
preset models are mapping to an endpoint.
|
|
`model` will be ignored if `endpoint` is set
|
|
"""
|
|
|
|
endpoint: Optional[str] = None
|
|
"""Endpoint of the Qianfan LLM, required if custom model used."""
|
|
|
|
request_timeout: Optional[int] = 60
|
|
"""request timeout for chat http requests"""
|
|
|
|
top_p: Optional[float] = 0.8
|
|
temperature: Optional[float] = 0.95
|
|
penalty_score: Optional[float] = 1
|
|
"""Model params, only supported in ERNIE-Bot and ERNIE-Bot-turbo.
|
|
In the case of other model, passing these params will not affect the result.
|
|
"""
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
values["qianfan_ak"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"qianfan_ak",
|
|
"QIANFAN_AK",
|
|
default="",
|
|
)
|
|
)
|
|
values["qianfan_sk"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values,
|
|
"qianfan_sk",
|
|
"QIANFAN_SK",
|
|
default="",
|
|
)
|
|
)
|
|
|
|
params = {
|
|
**values.get("init_kwargs", {}),
|
|
"model": values["model"],
|
|
}
|
|
if values["qianfan_ak"].get_secret_value() != "":
|
|
params["ak"] = values["qianfan_ak"].get_secret_value()
|
|
if values["qianfan_sk"].get_secret_value() != "":
|
|
params["sk"] = values["qianfan_sk"].get_secret_value()
|
|
if values["endpoint"] is not None and values["endpoint"] != "":
|
|
params["endpoint"] = values["endpoint"]
|
|
try:
|
|
import qianfan
|
|
|
|
values["client"] = qianfan.Completion(**params)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"qianfan package not found, please install it with "
|
|
"`pip install qianfan`"
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
return {
|
|
**{"endpoint": self.endpoint, "model": self.model},
|
|
**super()._identifying_params,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "baidu-qianfan-endpoint"
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Qianfan API."""
|
|
normal_params = {
|
|
"model": self.model,
|
|
"endpoint": self.endpoint,
|
|
"stream": self.streaming,
|
|
"request_timeout": self.request_timeout,
|
|
"top_p": self.top_p,
|
|
"temperature": self.temperature,
|
|
"penalty_score": self.penalty_score,
|
|
}
|
|
|
|
return {**normal_params, **self.model_kwargs}
|
|
|
|
def _convert_prompt_msg_params(
|
|
self,
|
|
prompt: str,
|
|
**kwargs: Any,
|
|
) -> dict:
|
|
if "streaming" in kwargs:
|
|
kwargs["stream"] = kwargs.pop("streaming")
|
|
return {
|
|
**{"prompt": prompt, "model": self.model},
|
|
**self._default_params,
|
|
**kwargs,
|
|
}
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to an qianfan models endpoint for each generation with a prompt.
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
response = qianfan_model("Tell me a joke.")
|
|
"""
|
|
if self.streaming:
|
|
completion = ""
|
|
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
|
|
completion += chunk.text
|
|
return completion
|
|
params = self._convert_prompt_msg_params(prompt, **kwargs)
|
|
response_payload = self.client.do(**params)
|
|
|
|
return response_payload["result"]
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
if self.streaming:
|
|
completion = ""
|
|
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
|
|
completion += chunk.text
|
|
return completion
|
|
|
|
params = self._convert_prompt_msg_params(prompt, **kwargs)
|
|
response_payload = await self.client.ado(**params)
|
|
|
|
return response_payload["result"]
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
|
|
for res in self.client.do(**params):
|
|
if res:
|
|
chunk = GenerationChunk(text=res["result"])
|
|
yield chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text)
|
|
|
|
async def _astream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[GenerationChunk]:
|
|
params = self._convert_prompt_msg_params(prompt, **{**kwargs, "stream": True})
|
|
async for res in await self.client.ado(**params):
|
|
if res:
|
|
chunk = GenerationChunk(text=res["result"])
|
|
|
|
yield chunk
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(chunk.text)
|