mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
2c180d645e
This PR introduces a @pre_init decorator that's a @root_validator(pre=True) but with all the defaults populated!
240 lines
7.8 KiB
Python
240 lines
7.8 KiB
Python
import json
|
|
import logging
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.utils import get_from_dict_or_env, pre_init
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PaiEasEndpoint(LLM):
|
|
"""Langchain LLM class to help to access eass llm service.
|
|
|
|
To use this endpoint, must have a deployed eas chat llm service on PAI AliCloud.
|
|
One can set the environment variable ``eas_service_url`` and ``eas_service_token``.
|
|
The environment variables can set with your eas service url and service token.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms.pai_eas_endpoint import PaiEasEndpoint
|
|
eas_chat_endpoint = PaiEasChatEndpoint(
|
|
eas_service_url="your_service_url",
|
|
eas_service_token="your_service_token"
|
|
)
|
|
"""
|
|
|
|
"""PAI-EAS Service URL"""
|
|
eas_service_url: str
|
|
|
|
"""PAI-EAS Service TOKEN"""
|
|
eas_service_token: str
|
|
|
|
"""PAI-EAS Service Infer Params"""
|
|
max_new_tokens: Optional[int] = 512
|
|
temperature: Optional[float] = 0.95
|
|
top_p: Optional[float] = 0.1
|
|
top_k: Optional[int] = 0
|
|
stop_sequences: Optional[List[str]] = None
|
|
|
|
"""Enable stream chat mode."""
|
|
streaming: bool = False
|
|
|
|
"""Key/value arguments to pass to the model. Reserved for future use"""
|
|
model_kwargs: Optional[dict] = None
|
|
|
|
version: Optional[str] = "2.0"
|
|
|
|
@pre_init
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["eas_service_url"] = get_from_dict_or_env(
|
|
values, "eas_service_url", "EAS_SERVICE_URL"
|
|
)
|
|
values["eas_service_token"] = get_from_dict_or_env(
|
|
values, "eas_service_token", "EAS_SERVICE_TOKEN"
|
|
)
|
|
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "pai_eas_endpoint"
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling Cohere API."""
|
|
return {
|
|
"max_new_tokens": self.max_new_tokens,
|
|
"temperature": self.temperature,
|
|
"top_k": self.top_k,
|
|
"top_p": self.top_p,
|
|
"stop_sequences": [],
|
|
}
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
"eas_service_url": self.eas_service_url,
|
|
"eas_service_token": self.eas_service_token,
|
|
**_model_kwargs,
|
|
}
|
|
|
|
def _invocation_params(
|
|
self, stop_sequences: Optional[List[str]], **kwargs: Any
|
|
) -> dict:
|
|
params = self._default_params
|
|
if self.stop_sequences is not None and stop_sequences is not None:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
elif self.stop_sequences is not None:
|
|
params["stop"] = self.stop_sequences
|
|
else:
|
|
params["stop"] = stop_sequences
|
|
if self.model_kwargs:
|
|
params.update(self.model_kwargs)
|
|
return {**params, **kwargs}
|
|
|
|
@staticmethod
|
|
def _process_response(
|
|
response: Any, stop: Optional[List[str]], version: Optional[str]
|
|
) -> str:
|
|
if version == "1.0":
|
|
text = response
|
|
else:
|
|
text = response["response"]
|
|
|
|
if stop:
|
|
text = enforce_stop_tokens(text, stop)
|
|
return "".join(text)
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
params = self._invocation_params(stop, **kwargs)
|
|
prompt = prompt.strip()
|
|
response = None
|
|
try:
|
|
if self.streaming:
|
|
completion = ""
|
|
for chunk in self._stream(prompt, stop, run_manager, **params):
|
|
completion += chunk.text
|
|
return completion
|
|
else:
|
|
response = self._call_eas(prompt, params)
|
|
_stop = params.get("stop")
|
|
return self._process_response(response, _stop, self.version)
|
|
except Exception as error:
|
|
raise ValueError(f"Error raised by the service: {error}")
|
|
|
|
def _call_eas(self, prompt: str = "", params: Dict = {}) -> Any:
|
|
"""Generate text from the eas service."""
|
|
headers = {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"{self.eas_service_token}",
|
|
}
|
|
if self.version == "1.0":
|
|
body = {
|
|
"input_ids": f"{prompt}",
|
|
}
|
|
else:
|
|
body = {
|
|
"prompt": f"{prompt}",
|
|
}
|
|
|
|
# add params to body
|
|
for key, value in params.items():
|
|
body[key] = value
|
|
|
|
# make request
|
|
response = requests.post(self.eas_service_url, headers=headers, json=body)
|
|
|
|
if response.status_code != 200:
|
|
raise Exception(
|
|
f"Request failed with status code {response.status_code}"
|
|
f" and message {response.text}"
|
|
)
|
|
|
|
try:
|
|
return json.loads(response.text)
|
|
except Exception as e:
|
|
if isinstance(e, json.decoder.JSONDecodeError):
|
|
return response.text
|
|
raise e
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
invocation_params = self._invocation_params(stop, **kwargs)
|
|
|
|
headers = {
|
|
"User-Agent": "Test Client",
|
|
"Authorization": f"{self.eas_service_token}",
|
|
}
|
|
|
|
if self.version == "1.0":
|
|
pload = {"input_ids": prompt, **invocation_params}
|
|
response = requests.post(
|
|
self.eas_service_url, headers=headers, json=pload, stream=True
|
|
)
|
|
|
|
res = GenerationChunk(text=response.text)
|
|
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(res.text)
|
|
|
|
# yield text, if any
|
|
yield res
|
|
else:
|
|
pload = {"prompt": prompt, "use_stream_chat": "True", **invocation_params}
|
|
|
|
response = requests.post(
|
|
self.eas_service_url, headers=headers, json=pload, stream=True
|
|
)
|
|
|
|
for chunk in response.iter_lines(
|
|
chunk_size=8192, decode_unicode=False, delimiter=b"\0"
|
|
):
|
|
if chunk:
|
|
data = json.loads(chunk.decode("utf-8"))
|
|
output = data["response"]
|
|
# identify stop sequence in generated text, if any
|
|
stop_seq_found: Optional[str] = None
|
|
for stop_seq in invocation_params["stop"]:
|
|
if stop_seq in output:
|
|
stop_seq_found = stop_seq
|
|
|
|
# identify text to yield
|
|
text: Optional[str] = None
|
|
if stop_seq_found:
|
|
text = output[: output.index(stop_seq_found)]
|
|
else:
|
|
text = output
|
|
|
|
# yield text, if any
|
|
if text:
|
|
res = GenerationChunk(text=text)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(res.text)
|
|
yield res
|
|
|
|
# break if stop sequence found
|
|
if stop_seq_found:
|
|
break
|