mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
498 lines
16 KiB
Plaintext
498 lines
16 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"id": "9fc3897d-176f-4729-8fd1-cfb4add53abd",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Nomic multi-modal RAG\n",
|
|
"\n",
|
|
"Many documents contain a mixture of content types, including text and images. \n",
|
|
"\n",
|
|
"Yet, information captured in images is lost in most RAG applications.\n",
|
|
"\n",
|
|
"With the emergence of multimodal LLMs, like [GPT-4V](https://openai.com/research/gpt-4v-system-card), it is worth considering how to utilize images in RAG:\n",
|
|
"\n",
|
|
"In this demo we\n",
|
|
"\n",
|
|
"* Use multimodal embeddings from Nomic Embed [Vision](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) and [Text](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) to embed images and text\n",
|
|
"* Retrieve both using similarity search\n",
|
|
"* Pass raw images and text chunks to a multimodal LLM for answer synthesis \n",
|
|
"\n",
|
|
"## Signup\n",
|
|
"\n",
|
|
"Get your API token, then run:\n",
|
|
"```\n",
|
|
"! nomic login\n",
|
|
"```\n",
|
|
"\n",
|
|
"Then run with your generated API token \n",
|
|
"```\n",
|
|
"! nomic login < token > \n",
|
|
"```\n",
|
|
"\n",
|
|
"## Packages\n",
|
|
"\n",
|
|
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "54926b9b-75c2-4cd4-8f14-b3882a0d370b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"! nomic login token"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"! pip install -U langchain-nomic langchain-chroma langchain-community tiktoken langchain-openai langchain # (newest versions required for multi-modal)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "acbdc603-39e2-4a5f-836c-2bbaecd46b0b",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
|
|
"! pip install \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml pillow matplotlib tiktoken"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1e94b3fb-8e3e-4736-be0a-ad881626c7bd",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Data Loading\n",
|
|
"\n",
|
|
"### Partition PDF text and images\n",
|
|
" \n",
|
|
"Let's look at an example pdfs containing interesting images.\n",
|
|
"\n",
|
|
"1/ Art from the J Paul Getty museum:\n",
|
|
"\n",
|
|
" * Here is a [zip file](https://drive.google.com/file/d/18kRKbq2dqAhhJ3DfZRnYcTBEUfYxe1YR/view?usp=sharing) with the PDF and the already extracted images. \n",
|
|
"* https://www.getty.edu/publications/resources/virtuallibrary/0892360224.pdf\n",
|
|
"\n",
|
|
"2/ Famous photographs from library of congress:\n",
|
|
"\n",
|
|
"* https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\n",
|
|
"* We'll use this as an example below\n",
|
|
"\n",
|
|
"We can use `partition_pdf` below from [Unstructured](https://unstructured-io.github.io/unstructured/introduction.html#key-concepts) to extract text and images.\n",
|
|
"\n",
|
|
"To supply this to extract the images:\n",
|
|
"```\n",
|
|
"extract_images_in_pdf=True\n",
|
|
"```\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"If using this zip file, then you can simply process the text only with:\n",
|
|
"```\n",
|
|
"extract_images_in_pdf=False\n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9646b524-71a7-4b2a-bdc8-0b81f77e968f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Folder with pdf and extracted images\n",
|
|
"from pathlib import Path\n",
|
|
"\n",
|
|
"# replace with actual path to images\n",
|
|
"path = Path(\"../art\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "77f096ab-a933-41d0-8f4e-1efc83998fc3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"path.resolve()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bc4839c0-8773-4a07-ba59-5364501269b2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Extract images, tables, and chunk text\n",
|
|
"from unstructured.partition.pdf import partition_pdf\n",
|
|
"\n",
|
|
"raw_pdf_elements = partition_pdf(\n",
|
|
" filename=str(path.resolve()) + \"/getty.pdf\",\n",
|
|
" extract_images_in_pdf=False,\n",
|
|
" infer_table_structure=True,\n",
|
|
" chunking_strategy=\"by_title\",\n",
|
|
" max_characters=4000,\n",
|
|
" new_after_n_chars=3800,\n",
|
|
" combine_text_under_n_chars=2000,\n",
|
|
" image_output_dir_path=path,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "969545ad",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Categorize text elements by type\n",
|
|
"tables = []\n",
|
|
"texts = []\n",
|
|
"for element in raw_pdf_elements:\n",
|
|
" if \"unstructured.documents.elements.Table\" in str(type(element)):\n",
|
|
" tables.append(str(element))\n",
|
|
" elif \"unstructured.documents.elements.CompositeElement\" in str(type(element)):\n",
|
|
" texts.append(str(element))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5d8e6349-1547-4cbf-9c6f-491d8610ec10",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Multi-modal embeddings with our document\n",
|
|
"\n",
|
|
"We will use [nomic-embed-vision-v1.5](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) embeddings. This model is aligned \n",
|
|
"to [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) allowing for multimodal semantic search and Multimodal RAG!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4bc15842-cb95-4f84-9eb5-656b0282a800",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"import uuid\n",
|
|
"\n",
|
|
"import chromadb\n",
|
|
"import numpy as np\n",
|
|
"from langchain_chroma import Chroma\n",
|
|
"from langchain_nomic import NomicEmbeddings\n",
|
|
"from PIL import Image as _PILImage\n",
|
|
"\n",
|
|
"# Create chroma\n",
|
|
"text_vectorstore = Chroma(\n",
|
|
" collection_name=\"mm_rag_clip_photos_text\",\n",
|
|
" embedding_function=NomicEmbeddings(\n",
|
|
" vision_model=\"nomic-embed-vision-v1.5\", model=\"nomic-embed-text-v1.5\"\n",
|
|
" ),\n",
|
|
")\n",
|
|
"image_vectorstore = Chroma(\n",
|
|
" collection_name=\"mm_rag_clip_photos_image\",\n",
|
|
" embedding_function=NomicEmbeddings(\n",
|
|
" vision_model=\"nomic-embed-vision-v1.5\", model=\"nomic-embed-text-v1.5\"\n",
|
|
" ),\n",
|
|
")\n",
|
|
"\n",
|
|
"# Get image URIs with .jpg extension only\n",
|
|
"image_uris = sorted(\n",
|
|
" [\n",
|
|
" os.path.join(path, image_name)\n",
|
|
" for image_name in os.listdir(path)\n",
|
|
" if image_name.endswith(\".jpg\")\n",
|
|
" ]\n",
|
|
")\n",
|
|
"\n",
|
|
"# Add images\n",
|
|
"image_vectorstore.add_images(uris=image_uris)\n",
|
|
"\n",
|
|
"# Add documents\n",
|
|
"text_vectorstore.add_texts(texts=texts)\n",
|
|
"\n",
|
|
"# Make retriever\n",
|
|
"image_retriever = image_vectorstore.as_retriever()\n",
|
|
"text_retriever = text_vectorstore.as_retriever()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "02a186d0-27e0-4820-8092-63b5349dd25d",
|
|
"metadata": {},
|
|
"source": [
|
|
"## RAG\n",
|
|
"\n",
|
|
"`vectorstore.add_images` will store / retrieve images as base64 encoded strings.\n",
|
|
"\n",
|
|
"These can be passed to [GPT-4V](https://platform.openai.com/docs/guides/vision)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "344f56a8-0dc3-433e-851c-3f7600c7a72b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import base64\n",
|
|
"import io\n",
|
|
"from io import BytesIO\n",
|
|
"\n",
|
|
"import numpy as np\n",
|
|
"from PIL import Image\n",
|
|
"\n",
|
|
"\n",
|
|
"def resize_base64_image(base64_string, size=(128, 128)):\n",
|
|
" \"\"\"\n",
|
|
" Resize an image encoded as a Base64 string.\n",
|
|
"\n",
|
|
" Args:\n",
|
|
" base64_string (str): Base64 string of the original image.\n",
|
|
" size (tuple): Desired size of the image as (width, height).\n",
|
|
"\n",
|
|
" Returns:\n",
|
|
" str: Base64 string of the resized image.\n",
|
|
" \"\"\"\n",
|
|
" # Decode the Base64 string\n",
|
|
" img_data = base64.b64decode(base64_string)\n",
|
|
" img = Image.open(io.BytesIO(img_data))\n",
|
|
"\n",
|
|
" # Resize the image\n",
|
|
" resized_img = img.resize(size, Image.LANCZOS)\n",
|
|
"\n",
|
|
" # Save the resized image to a bytes buffer\n",
|
|
" buffered = io.BytesIO()\n",
|
|
" resized_img.save(buffered, format=img.format)\n",
|
|
"\n",
|
|
" # Encode the resized image to Base64\n",
|
|
" return base64.b64encode(buffered.getvalue()).decode(\"utf-8\")\n",
|
|
"\n",
|
|
"\n",
|
|
"def is_base64(s):\n",
|
|
" \"\"\"Check if a string is Base64 encoded\"\"\"\n",
|
|
" try:\n",
|
|
" return base64.b64encode(base64.b64decode(s)) == s.encode()\n",
|
|
" except Exception:\n",
|
|
" return False\n",
|
|
"\n",
|
|
"\n",
|
|
"def split_image_text_types(docs):\n",
|
|
" \"\"\"Split numpy array images and texts\"\"\"\n",
|
|
" images = []\n",
|
|
" text = []\n",
|
|
" for doc in docs:\n",
|
|
" doc = doc.page_content # Extract Document contents\n",
|
|
" if is_base64(doc):\n",
|
|
" # Resize image to avoid OAI server error\n",
|
|
" images.append(\n",
|
|
" resize_base64_image(doc, size=(250, 250))\n",
|
|
" ) # base64 encoded str\n",
|
|
" else:\n",
|
|
" text.append(doc)\n",
|
|
" return {\"images\": images, \"texts\": text}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "23a2c1d8-fea6-4152-b184-3172dd46c735",
|
|
"metadata": {},
|
|
"source": [
|
|
"Currently, we format the inputs using a `RunnableLambda` while we add image support to `ChatPromptTemplates`.\n",
|
|
"\n",
|
|
"Our runnable follows the classic RAG flow - \n",
|
|
"\n",
|
|
"* We first compute the context (both \"texts\" and \"images\" in this case) and the question (just a RunnablePassthrough here) \n",
|
|
"* Then we pass this into our prompt template, which is a custom function that formats the message for the gpt-4-vision-preview model. \n",
|
|
"* And finally we parse the output as a string."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "5d8919dc-c238-4746-86ba-45d940a7d260",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"os.environ[\"OPENAI_API_KEY\"] = \"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "4c93fab3-74c4-4f1d-958a-0bc4cdd0797e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from operator import itemgetter\n",
|
|
"\n",
|
|
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
|
"from langchain_core.output_parsers import StrOutputParser\n",
|
|
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
|
"from langchain_openai import ChatOpenAI\n",
|
|
"\n",
|
|
"\n",
|
|
"def prompt_func(data_dict):\n",
|
|
" # Joining the context texts into a single string\n",
|
|
" formatted_texts = \"\\n\".join(data_dict[\"text_context\"][\"texts\"])\n",
|
|
" messages = []\n",
|
|
"\n",
|
|
" # Adding image(s) to the messages if present\n",
|
|
" if data_dict[\"image_context\"][\"images\"]:\n",
|
|
" image_message = {\n",
|
|
" \"type\": \"image_url\",\n",
|
|
" \"image_url\": {\n",
|
|
" \"url\": f\"data:image/jpeg;base64,{data_dict['image_context']['images'][0]}\"\n",
|
|
" },\n",
|
|
" }\n",
|
|
" messages.append(image_message)\n",
|
|
"\n",
|
|
" # Adding the text message for analysis\n",
|
|
" text_message = {\n",
|
|
" \"type\": \"text\",\n",
|
|
" \"text\": (\n",
|
|
" \"As an expert art critic and historian, your task is to analyze and interpret images, \"\n",
|
|
" \"considering their historical and cultural significance. Alongside the images, you will be \"\n",
|
|
" \"provided with related text to offer context. Both will be retrieved from a vectorstore based \"\n",
|
|
" \"on user-input keywords. Please use your extensive knowledge and analytical skills to provide a \"\n",
|
|
" \"comprehensive summary that includes:\\n\"\n",
|
|
" \"- A detailed description of the visual elements in the image.\\n\"\n",
|
|
" \"- The historical and cultural context of the image.\\n\"\n",
|
|
" \"- An interpretation of the image's symbolism and meaning.\\n\"\n",
|
|
" \"- Connections between the image and the related text.\\n\\n\"\n",
|
|
" f\"User-provided keywords: {data_dict['question']}\\n\\n\"\n",
|
|
" \"Text and / or tables:\\n\"\n",
|
|
" f\"{formatted_texts}\"\n",
|
|
" ),\n",
|
|
" }\n",
|
|
" messages.append(text_message)\n",
|
|
"\n",
|
|
" return [HumanMessage(content=messages)]\n",
|
|
"\n",
|
|
"\n",
|
|
"model = ChatOpenAI(temperature=0, model=\"gpt-4-vision-preview\", max_tokens=1024)\n",
|
|
"\n",
|
|
"# RAG pipeline\n",
|
|
"chain = (\n",
|
|
" {\n",
|
|
" \"text_context\": text_retriever | RunnableLambda(split_image_text_types),\n",
|
|
" \"image_context\": image_retriever | RunnableLambda(split_image_text_types),\n",
|
|
" \"question\": RunnablePassthrough(),\n",
|
|
" }\n",
|
|
" | RunnableLambda(prompt_func)\n",
|
|
" | model\n",
|
|
" | StrOutputParser()\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1566096d-97c2-4ddc-ba4a-6ef88c525e4e",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Test retrieval and run RAG"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "90121e56-674b-473b-871d-6e4753fd0c45",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from IPython.display import HTML, display\n",
|
|
"\n",
|
|
"\n",
|
|
"def plt_img_base64(img_base64):\n",
|
|
" # Create an HTML img tag with the base64 string as the source\n",
|
|
" image_html = f'<img src=\"data:image/jpeg;base64,{img_base64}\" />'\n",
|
|
"\n",
|
|
" # Display the image by rendering the HTML\n",
|
|
" display(HTML(image_html))\n",
|
|
"\n",
|
|
"\n",
|
|
"docs = text_retriever.invoke(\"Women with children\", k=5)\n",
|
|
"for doc in docs:\n",
|
|
" if is_base64(doc.page_content):\n",
|
|
" plt_img_base64(doc.page_content)\n",
|
|
" else:\n",
|
|
" print(doc.page_content)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "44eaa532-f035-4c04-b578-02339d42554c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"docs = image_retriever.invoke(\"Women with children\", k=5)\n",
|
|
"for doc in docs:\n",
|
|
" if is_base64(doc.page_content):\n",
|
|
" plt_img_base64(doc.page_content)\n",
|
|
" else:\n",
|
|
" print(doc.page_content)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "69fb15fd-76fc-49b4-806d-c4db2990027d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"chain.invoke(\"Women with children\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "227f08b8-e732-4089-b65c-6eb6f9e48f15",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can see the images retrieved in the LangSmith trace:\n",
|
|
"\n",
|
|
"LangSmith [trace](https://smith.langchain.com/public/69c558a5-49dc-4c60-a49b-3adbb70f74c5/r/e872c2c8-528c-468f-aefd-8b5cd730a673)."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.9"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|