langchain/libs/partners/nomic/langchain_nomic/embeddings.py
Erick Friis d7418acbe1
nomic[patch]: release 0.0.2, dimensionality (#17534)
- nomic[patch]: release 0.0.2
- x
2024-02-14 08:38:07 -08:00

78 lines
2.0 KiB
Python

import os
from typing import List, Optional
import nomic # type: ignore
from langchain_core.embeddings import Embeddings
from nomic import embed # type: ignore
class NomicEmbeddings(Embeddings):
"""NomicEmbeddings embedding model.
Example:
.. code-block:: python
from langchain_nomic import NomicEmbeddings
model = NomicEmbeddings()
"""
def __init__(
self,
*,
model: str,
nomic_api_key: Optional[str] = None,
dimensionality: Optional[int] = None,
):
"""Initialize NomicEmbeddings model.
Args:
model: model name
nomic_api_key: optionally, set the Nomic API key. Uses the NOMIC_API_KEY
environment variable by default.
"""
_api_key = nomic_api_key or os.environ.get("NOMIC_API_KEY")
if _api_key:
nomic.login(_api_key)
self.model = model
self.dimensionality = dimensionality
def embed(self, texts: List[str], *, task_type: str) -> List[List[float]]:
"""Embed texts.
Args:
texts: list of texts to embed
task_type: the task type to use when embedding. One of `search_query`,
`search_document`, `classification`, `clustering`
"""
output = embed.text(
texts=texts,
model=self.model,
task_type=task_type,
dimensionality=self.dimensionality,
)
return output["embeddings"]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs.
Args:
texts: list of texts to embed as documents
"""
return self.embed(
texts=texts,
task_type="search_document",
)
def embed_query(self, text: str) -> List[float]:
"""Embed query text.
Args:
text: query text
"""
return self.embed(
texts=[text],
task_type="search_query",
)[0]