mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
6c18f73ca5
Hi, I'm from the LanceDB team. Improves LanceDB integration by making it easier to use - now you aren't required to create tables manually and pass them in the constructor, although that is still backward compatible. Bug fix - pandas was being used even though it's not a dependency for LanceDB or langchain PS - this issue was raised a few months ago but lost traction. It is a feature improvement for our users kindly review this , Thanks !
187 lines
5.9 KiB
Python
187 lines
5.9 KiB
Python
from __future__ import annotations
|
|
|
|
import uuid
|
|
from typing import Any, Iterable, List, Optional
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
class LanceDB(VectorStore):
|
|
"""`LanceDB` vector store.
|
|
|
|
To use, you should have ``lancedb`` python package installed.
|
|
You can install it with ``pip install lancedb``.
|
|
|
|
Args:
|
|
connection: LanceDB connection to use. If not provided, a new connection
|
|
will be created.
|
|
embedding: Embedding to use for the vectorstore.
|
|
vector_key: Key to use for the vector in the database. Defaults to ``vector``.
|
|
id_key: Key to use for the id in the database. Defaults to ``id``.
|
|
text_key: Key to use for the text in the database. Defaults to ``text``.
|
|
table_name: Name of the table to use. Defaults to ``vectorstore``.
|
|
|
|
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
db = lancedb.connect('./lancedb')
|
|
table = db.open_table('my_table')
|
|
vectorstore = LanceDB(table, embedding_function)
|
|
vectorstore.add_texts(['text1', 'text2'])
|
|
result = vectorstore.similarity_search('text1')
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
connection: Optional[Any] = None,
|
|
embedding: Optional[Embeddings] = None,
|
|
vector_key: Optional[str] = "vector",
|
|
id_key: Optional[str] = "id",
|
|
text_key: Optional[str] = "text",
|
|
table_name: Optional[str] = "vectorstore",
|
|
):
|
|
"""Initialize with Lance DB vectorstore"""
|
|
try:
|
|
import lancedb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import lancedb python package. "
|
|
"Please install it with `pip install lancedb`."
|
|
)
|
|
self.lancedb = lancedb
|
|
self._embedding = embedding
|
|
self._vector_key = vector_key
|
|
self._id_key = id_key
|
|
self._text_key = text_key
|
|
self._table_name = table_name
|
|
|
|
if self._embedding is None:
|
|
raise ValueError("embedding should be provided")
|
|
|
|
if connection is not None:
|
|
if not isinstance(connection, lancedb.db.LanceTable):
|
|
raise ValueError(
|
|
"connection should be an instance of lancedb.db.LanceTable, ",
|
|
f"got {type(connection)}",
|
|
)
|
|
self._connection = connection
|
|
else:
|
|
self._connection = self._init_table()
|
|
|
|
@property
|
|
def embeddings(self) -> Optional[Embeddings]:
|
|
return self._embedding
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Turn texts into embedding and add it to the database
|
|
|
|
Args:
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
ids: Optional list of ids to associate with the texts.
|
|
|
|
Returns:
|
|
List of ids of the added texts.
|
|
"""
|
|
# Embed texts and create documents
|
|
docs = []
|
|
ids = ids or [str(uuid.uuid4()) for _ in texts]
|
|
embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
|
|
for idx, text in enumerate(texts):
|
|
embedding = embeddings[idx]
|
|
metadata = metadatas[idx] if metadatas else {}
|
|
docs.append(
|
|
{
|
|
self._vector_key: embedding,
|
|
self._id_key: ids[idx],
|
|
self._text_key: text,
|
|
**metadata,
|
|
}
|
|
)
|
|
self._connection.add(docs)
|
|
return ids
|
|
|
|
def similarity_search(
|
|
self, query: str, k: int = 4, **kwargs: Any
|
|
) -> List[Document]:
|
|
"""Return documents most similar to the query
|
|
|
|
Args:
|
|
query: String to query the vectorstore with.
|
|
k: Number of documents to return.
|
|
|
|
Returns:
|
|
List of documents most similar to the query.
|
|
"""
|
|
embedding = self._embedding.embed_query(query) # type: ignore
|
|
docs = (
|
|
self._connection.search(embedding, vector_column_name=self._vector_key)
|
|
.limit(k)
|
|
.to_arrow()
|
|
)
|
|
columns = docs.schema.names
|
|
return [
|
|
Document(
|
|
page_content=docs[self._text_key][idx].as_py(),
|
|
metadata={
|
|
col: docs[col][idx].as_py()
|
|
for col in columns
|
|
if col != self._text_key
|
|
},
|
|
)
|
|
for idx in range(len(docs))
|
|
]
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls,
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
connection: Any = None,
|
|
vector_key: Optional[str] = "vector",
|
|
id_key: Optional[str] = "id",
|
|
text_key: Optional[str] = "text",
|
|
**kwargs: Any,
|
|
) -> LanceDB:
|
|
instance = LanceDB(
|
|
connection,
|
|
embedding,
|
|
vector_key,
|
|
id_key,
|
|
text_key,
|
|
)
|
|
instance.add_texts(texts, metadatas=metadatas, **kwargs)
|
|
|
|
return instance
|
|
|
|
def _init_table(self) -> Any:
|
|
import pyarrow as pa
|
|
|
|
schema = pa.schema(
|
|
[
|
|
pa.field(
|
|
self._vector_key,
|
|
pa.list_(
|
|
pa.float32(),
|
|
len(self.embeddings.embed_query("test")), # type: ignore
|
|
),
|
|
),
|
|
pa.field(self._id_key, pa.string()),
|
|
pa.field(self._text_key, pa.string()),
|
|
]
|
|
)
|
|
db = self.lancedb.connect("/tmp/lancedb")
|
|
tbl = db.create_table(self._table_name, schema=schema, mode="overwrite")
|
|
return tbl
|