mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
dd25d08c06
DeepInfra now supports tool calling for supported models. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
126 lines
3.9 KiB
Python
126 lines
3.9 KiB
Python
"""Test ChatDeepInfra wrapper."""
|
|
from typing import List
|
|
|
|
from langchain_core.messages import BaseMessage, HumanMessage
|
|
from langchain_core.messages.ai import AIMessage
|
|
from langchain_core.messages.tool import ToolMessage
|
|
from langchain_core.outputs import ChatGeneration, LLMResult
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.runnables.base import RunnableBinding
|
|
|
|
from langchain_community.chat_models.deepinfra import ChatDeepInfra
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
class GenerateMovieName(BaseModel):
|
|
"Get a movie name from a description"
|
|
|
|
description: str
|
|
|
|
|
|
def test_chat_deepinfra() -> None:
|
|
"""Test valid call to DeepInfra."""
|
|
chat = ChatDeepInfra(
|
|
max_tokens=10,
|
|
)
|
|
response = chat.invoke([HumanMessage(content="Hello")])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_chat_deepinfra_streaming() -> None:
|
|
callback_handler = FakeCallbackHandler()
|
|
chat = ChatDeepInfra(
|
|
callbacks=[callback_handler],
|
|
streaming=True,
|
|
max_tokens=10,
|
|
)
|
|
response = chat.invoke([HumanMessage(content="Hello")])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
async def test_async_chat_deepinfra() -> None:
|
|
"""Test async generation."""
|
|
chat = ChatDeepInfra(
|
|
max_tokens=10,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 1
|
|
assert len(response.generations[0]) == 1
|
|
generation = response.generations[0][0]
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
async def test_async_chat_deepinfra_streaming() -> None:
|
|
callback_handler = FakeCallbackHandler()
|
|
chat = ChatDeepInfra(
|
|
# model="meta-llama/Llama-2-7b-chat-hf",
|
|
callbacks=[callback_handler],
|
|
max_tokens=10,
|
|
streaming=True,
|
|
timeout=5,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 1
|
|
assert len(response.generations[0]) == 1
|
|
generation = response.generations[0][0]
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
def test_chat_deepinfra_bind_tools() -> None:
|
|
class Foo(BaseModel):
|
|
pass
|
|
|
|
chat = ChatDeepInfra(
|
|
max_tokens=10,
|
|
)
|
|
tools = [Foo]
|
|
chat_with_tools = chat.bind_tools(tools)
|
|
assert isinstance(chat_with_tools, RunnableBinding)
|
|
chat_tools = chat_with_tools.tools
|
|
assert chat_tools
|
|
assert chat_tools == {
|
|
"tools": [
|
|
{
|
|
"function": {
|
|
"description": "",
|
|
"name": "Foo",
|
|
"parameters": {"properties": {}, "type": "object"},
|
|
},
|
|
"type": "function",
|
|
}
|
|
]
|
|
}
|
|
|
|
|
|
def test_tool_use() -> None:
|
|
llm = ChatDeepInfra(model="meta-llama/Meta-Llama-3-70B-Instruct", temperature=0)
|
|
llm_with_tool = llm.bind_tools(tools=[GenerateMovieName], tool_choice=True)
|
|
msgs: List = [
|
|
HumanMessage(content="It should be a movie explaining humanity in 2133.")
|
|
]
|
|
ai_msg = llm_with_tool.invoke(msgs)
|
|
|
|
assert isinstance(ai_msg, AIMessage)
|
|
assert isinstance(ai_msg.tool_calls, list)
|
|
assert len(ai_msg.tool_calls) == 1
|
|
tool_call = ai_msg.tool_calls[0]
|
|
assert "args" in tool_call
|
|
|
|
tool_msg = ToolMessage(
|
|
content="Year 2133",
|
|
tool_call_id=ai_msg.additional_kwargs["tool_calls"][0]["id"],
|
|
)
|
|
msgs.extend([ai_msg, tool_msg])
|
|
llm_with_tool.invoke(msgs)
|