langchain/libs/community/tests/integration_tests/chat_models/test_deepinfra.py
Oguz Vuruskaner dd25d08c06
community[minor]: add tool calling for DeepInfraChat (#22745)
DeepInfra now supports tool calling for supported models.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-17 15:21:49 -04:00

126 lines
3.9 KiB
Python

"""Test ChatDeepInfra wrapper."""
from typing import List
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_core.messages.ai import AIMessage
from langchain_core.messages.tool import ToolMessage
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables.base import RunnableBinding
from langchain_community.chat_models.deepinfra import ChatDeepInfra
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
class GenerateMovieName(BaseModel):
"Get a movie name from a description"
description: str
def test_chat_deepinfra() -> None:
"""Test valid call to DeepInfra."""
chat = ChatDeepInfra(
max_tokens=10,
)
response = chat.invoke([HumanMessage(content="Hello")])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str)
def test_chat_deepinfra_streaming() -> None:
callback_handler = FakeCallbackHandler()
chat = ChatDeepInfra(
callbacks=[callback_handler],
streaming=True,
max_tokens=10,
)
response = chat.invoke([HumanMessage(content="Hello")])
assert callback_handler.llm_streams > 0
assert isinstance(response, BaseMessage)
async def test_async_chat_deepinfra() -> None:
"""Test async generation."""
chat = ChatDeepInfra(
max_tokens=10,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 1
assert len(response.generations[0]) == 1
generation = response.generations[0][0]
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
async def test_async_chat_deepinfra_streaming() -> None:
callback_handler = FakeCallbackHandler()
chat = ChatDeepInfra(
# model="meta-llama/Llama-2-7b-chat-hf",
callbacks=[callback_handler],
max_tokens=10,
streaming=True,
timeout=5,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 1
assert len(response.generations[0]) == 1
generation = response.generations[0][0]
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
def test_chat_deepinfra_bind_tools() -> None:
class Foo(BaseModel):
pass
chat = ChatDeepInfra(
max_tokens=10,
)
tools = [Foo]
chat_with_tools = chat.bind_tools(tools)
assert isinstance(chat_with_tools, RunnableBinding)
chat_tools = chat_with_tools.tools
assert chat_tools
assert chat_tools == {
"tools": [
{
"function": {
"description": "",
"name": "Foo",
"parameters": {"properties": {}, "type": "object"},
},
"type": "function",
}
]
}
def test_tool_use() -> None:
llm = ChatDeepInfra(model="meta-llama/Meta-Llama-3-70B-Instruct", temperature=0)
llm_with_tool = llm.bind_tools(tools=[GenerateMovieName], tool_choice=True)
msgs: List = [
HumanMessage(content="It should be a movie explaining humanity in 2133.")
]
ai_msg = llm_with_tool.invoke(msgs)
assert isinstance(ai_msg, AIMessage)
assert isinstance(ai_msg.tool_calls, list)
assert len(ai_msg.tool_calls) == 1
tool_call = ai_msg.tool_calls[0]
assert "args" in tool_call
tool_msg = ToolMessage(
content="Year 2133",
tool_call_id=ai_msg.additional_kwargs["tool_calls"][0]["id"],
)
msgs.extend([ai_msg, tool_msg])
llm_with_tool.invoke(msgs)