mirror of
https://github.com/hwchase17/langchain
synced 2024-11-13 19:10:52 +00:00
f5ff7f178b
- [x] PR title: community: Add OCI Generative AI new model support - [x] PR message: - Description: adding support for new models offered by OCI Generative AI services. This is a moderate update of our initial integration PR 16548 and includes a new integration for our chat models under /langchain_community/chat_models/oci_generative_ai.py - Issue: NA - Dependencies: No new Dependencies, just latest version of our OCI sdk - Twitter handle: NA - [x] Add tests and docs: 1. we have updated our unit tests 2. we have updated our documentation including a new ipynb for our new chat integration - [x] Lint and test: `make format`, `make lint`, and `make test` run successfully --------- Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com> Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
360 lines
12 KiB
Python
360 lines
12 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from typing import Any, Dict, Iterator, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"
|
|
|
|
|
|
class Provider(ABC):
|
|
@property
|
|
@abstractmethod
|
|
def stop_sequence_key(self) -> str:
|
|
...
|
|
|
|
@abstractmethod
|
|
def completion_response_to_text(self, response: Any) -> str:
|
|
...
|
|
|
|
|
|
class CohereProvider(Provider):
|
|
stop_sequence_key = "stop_sequences"
|
|
|
|
def __init__(self) -> None:
|
|
from oci.generative_ai_inference import models
|
|
|
|
self.llm_inference_request = models.CohereLlmInferenceRequest
|
|
|
|
def completion_response_to_text(self, response: Any) -> str:
|
|
return response.data.inference_response.generated_texts[0].text
|
|
|
|
|
|
class MetaProvider(Provider):
|
|
stop_sequence_key = "stop"
|
|
|
|
def __init__(self) -> None:
|
|
from oci.generative_ai_inference import models
|
|
|
|
self.llm_inference_request = models.LlamaLlmInferenceRequest
|
|
|
|
def completion_response_to_text(self, response: Any) -> str:
|
|
return response.data.inference_response.choices[0].text
|
|
|
|
|
|
class OCIAuthType(Enum):
|
|
"""OCI authentication types as enumerator."""
|
|
|
|
API_KEY = 1
|
|
SECURITY_TOKEN = 2
|
|
INSTANCE_PRINCIPAL = 3
|
|
RESOURCE_PRINCIPAL = 4
|
|
|
|
|
|
class OCIGenAIBase(BaseModel, ABC):
|
|
"""Base class for OCI GenAI models"""
|
|
|
|
client: Any #: :meta private:
|
|
|
|
auth_type: Optional[str] = "API_KEY"
|
|
"""Authentication type, could be
|
|
|
|
API_KEY,
|
|
SECURITY_TOKEN,
|
|
INSTANCE_PRINCIPAL,
|
|
RESOURCE_PRINCIPAL
|
|
|
|
If not specified, API_KEY will be used
|
|
"""
|
|
|
|
auth_profile: Optional[str] = "DEFAULT"
|
|
"""The name of the profile in ~/.oci/config
|
|
If not specified , DEFAULT will be used
|
|
"""
|
|
|
|
model_id: str = None # type: ignore[assignment]
|
|
"""Id of the model to call, e.g., cohere.command"""
|
|
|
|
provider: str = None # type: ignore[assignment]
|
|
"""Provider name of the model. Default to None,
|
|
will try to be derived from the model_id
|
|
otherwise, requires user input
|
|
"""
|
|
|
|
model_kwargs: Optional[Dict] = None
|
|
"""Keyword arguments to pass to the model"""
|
|
|
|
service_endpoint: str = None # type: ignore[assignment]
|
|
"""service endpoint url"""
|
|
|
|
compartment_id: str = None # type: ignore[assignment]
|
|
"""OCID of compartment"""
|
|
|
|
is_stream: bool = False
|
|
"""Whether to stream back partial progress"""
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that OCI config and python package exists in environment."""
|
|
|
|
# Skip creating new client if passed in constructor
|
|
if values["client"] is not None:
|
|
return values
|
|
|
|
try:
|
|
import oci
|
|
|
|
client_kwargs = {
|
|
"config": {},
|
|
"signer": None,
|
|
"service_endpoint": values["service_endpoint"],
|
|
"retry_strategy": oci.retry.DEFAULT_RETRY_STRATEGY,
|
|
"timeout": (10, 240), # default timeout config for OCI Gen AI service
|
|
}
|
|
|
|
if values["auth_type"] == OCIAuthType(1).name:
|
|
client_kwargs["config"] = oci.config.from_file(
|
|
profile_name=values["auth_profile"]
|
|
)
|
|
client_kwargs.pop("signer", None)
|
|
elif values["auth_type"] == OCIAuthType(2).name:
|
|
|
|
def make_security_token_signer(oci_config): # type: ignore[no-untyped-def]
|
|
pk = oci.signer.load_private_key_from_file(
|
|
oci_config.get("key_file"), None
|
|
)
|
|
with open(
|
|
oci_config.get("security_token_file"), encoding="utf-8"
|
|
) as f:
|
|
st_string = f.read()
|
|
return oci.auth.signers.SecurityTokenSigner(st_string, pk)
|
|
|
|
client_kwargs["config"] = oci.config.from_file(
|
|
profile_name=values["auth_profile"]
|
|
)
|
|
client_kwargs["signer"] = make_security_token_signer(
|
|
oci_config=client_kwargs["config"]
|
|
)
|
|
elif values["auth_type"] == OCIAuthType(3).name:
|
|
client_kwargs[
|
|
"signer"
|
|
] = oci.auth.signers.InstancePrincipalsSecurityTokenSigner()
|
|
elif values["auth_type"] == OCIAuthType(4).name:
|
|
client_kwargs[
|
|
"signer"
|
|
] = oci.auth.signers.get_resource_principals_signer()
|
|
else:
|
|
raise ValueError(
|
|
"Please provide valid value to auth_type, "
|
|
f"{values['auth_type']} is not valid."
|
|
)
|
|
|
|
values["client"] = oci.generative_ai_inference.GenerativeAiInferenceClient(
|
|
**client_kwargs
|
|
)
|
|
|
|
except ImportError as ex:
|
|
raise ModuleNotFoundError(
|
|
"Could not import oci python package. "
|
|
"Please make sure you have the oci package installed."
|
|
) from ex
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"""Could not authenticate with OCI client.
|
|
Please check if ~/.oci/config exists.
|
|
If INSTANCE_PRINCIPAL or RESOURCE_PRINCIPAL is used,
|
|
please check the specified
|
|
auth_profile and auth_type are valid.""",
|
|
e,
|
|
) from e
|
|
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
def _get_provider(self, provider_map: Mapping[str, Any]) -> Any:
|
|
if self.provider is not None:
|
|
provider = self.provider
|
|
else:
|
|
provider = self.model_id.split(".")[0].lower()
|
|
|
|
if provider not in provider_map:
|
|
raise ValueError(
|
|
f"Invalid provider derived from model_id: {self.model_id} "
|
|
"Please explicitly pass in the supported provider "
|
|
"when using custom endpoint"
|
|
)
|
|
return provider_map[provider]
|
|
|
|
|
|
class OCIGenAI(LLM, OCIGenAIBase):
|
|
"""OCI large language models.
|
|
|
|
To authenticate, the OCI client uses the methods described in
|
|
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm
|
|
|
|
The authentifcation method is passed through auth_type and should be one of:
|
|
API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPAL, RESOURCE_PRINCIPAL
|
|
|
|
Make sure you have the required policies (profile/roles) to
|
|
access the OCI Generative AI service.
|
|
If a specific config profile is used, you must pass
|
|
the name of the profile (from ~/.oci/config) through auth_profile.
|
|
|
|
To use, you must provide the compartment id
|
|
along with the endpoint url, and model id
|
|
as named parameters to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import OCIGenAI
|
|
|
|
llm = OCIGenAI(
|
|
model_id="MY_MODEL_ID",
|
|
service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com",
|
|
compartment_id="MY_OCID"
|
|
)
|
|
"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "oci_generative_ai_completion"
|
|
|
|
@property
|
|
def _provider_map(self) -> Mapping[str, Any]:
|
|
"""Get the provider map"""
|
|
return {
|
|
"cohere": CohereProvider(),
|
|
"meta": MetaProvider(),
|
|
}
|
|
|
|
@property
|
|
def _provider(self) -> Any:
|
|
"""Get the internal provider object"""
|
|
return self._get_provider(provider_map=self._provider_map)
|
|
|
|
def _prepare_invocation_object(
|
|
self, prompt: str, stop: Optional[List[str]], kwargs: Dict[str, Any]
|
|
) -> Dict[str, Any]:
|
|
from oci.generative_ai_inference import models
|
|
|
|
_model_kwargs = self.model_kwargs or {}
|
|
if stop is not None:
|
|
_model_kwargs[self._provider.stop_sequence_key] = stop
|
|
|
|
if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX):
|
|
serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id)
|
|
else:
|
|
serving_mode = models.OnDemandServingMode(model_id=self.model_id)
|
|
|
|
inference_params = {**_model_kwargs, **kwargs}
|
|
inference_params["prompt"] = prompt
|
|
inference_params["is_stream"] = self.is_stream
|
|
|
|
invocation_obj = models.GenerateTextDetails(
|
|
compartment_id=self.compartment_id,
|
|
serving_mode=serving_mode,
|
|
inference_request=self._provider.llm_inference_request(**inference_params),
|
|
)
|
|
|
|
return invocation_obj
|
|
|
|
def _process_response(self, response: Any, stop: Optional[List[str]]) -> str:
|
|
text = self._provider.completion_response_to_text(response)
|
|
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
|
|
return text
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to OCIGenAI generate endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = llm.invoke("Tell me a joke.")
|
|
"""
|
|
if self.is_stream:
|
|
text = ""
|
|
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
|
|
text += chunk.text
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|
|
|
|
invocation_obj = self._prepare_invocation_object(prompt, stop, kwargs)
|
|
response = self.client.generate_text(invocation_obj)
|
|
return self._process_response(response, stop)
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
"""Stream OCIGenAI LLM on given prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
An iterator of GenerationChunks.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = llm.stream("Tell me a joke.")
|
|
"""
|
|
|
|
self.is_stream = True
|
|
invocation_obj = self._prepare_invocation_object(prompt, stop, kwargs)
|
|
response = self.client.generate_text(invocation_obj)
|
|
|
|
for event in response.data.events():
|
|
json_load = json.loads(event.data)
|
|
if "text" in json_load:
|
|
event_data_text = json_load["text"]
|
|
else:
|
|
event_data_text = ""
|
|
chunk = GenerationChunk(text=event_data_text)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|