mirror of
https://github.com/hwchase17/langchain
synced 2024-11-13 19:10:52 +00:00
481d3855dc
- `llm(prompt)` -> `llm.invoke(prompt)` - `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`) - `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt, config={"callbacks": callbacks})` - `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
198 lines
5.0 KiB
Python
198 lines
5.0 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def clean_url(url: str) -> str:
|
|
"""Remove trailing slash and /api from url if present."""
|
|
if url.endswith("/api"):
|
|
return url[:-4]
|
|
elif url.endswith("/"):
|
|
return url[:-1]
|
|
else:
|
|
return url
|
|
|
|
|
|
class KoboldApiLLM(LLM):
|
|
"""Kobold API language model.
|
|
|
|
It includes several fields that can be used to control the text generation process.
|
|
|
|
To use this class, instantiate it with the required parameters and call it with a
|
|
prompt to generate text. For example:
|
|
|
|
kobold = KoboldApiLLM(endpoint="http://localhost:5000")
|
|
result = kobold("Write a story about a dragon.")
|
|
|
|
This will send a POST request to the Kobold API with the provided prompt and
|
|
generate text.
|
|
"""
|
|
|
|
endpoint: str
|
|
"""The API endpoint to use for generating text."""
|
|
|
|
use_story: Optional[bool] = False
|
|
""" Whether or not to use the story from the KoboldAI GUI when generating text. """
|
|
|
|
use_authors_note: Optional[bool] = False
|
|
"""Whether to use the author's note from the KoboldAI GUI when generating text.
|
|
|
|
This has no effect unless use_story is also enabled.
|
|
"""
|
|
|
|
use_world_info: Optional[bool] = False
|
|
"""Whether to use the world info from the KoboldAI GUI when generating text."""
|
|
|
|
use_memory: Optional[bool] = False
|
|
"""Whether to use the memory from the KoboldAI GUI when generating text."""
|
|
|
|
max_context_length: Optional[int] = 1600
|
|
"""Maximum number of tokens to send to the model.
|
|
|
|
minimum: 1
|
|
"""
|
|
|
|
max_length: Optional[int] = 80
|
|
"""Number of tokens to generate.
|
|
|
|
maximum: 512
|
|
minimum: 1
|
|
"""
|
|
|
|
rep_pen: Optional[float] = 1.12
|
|
"""Base repetition penalty value.
|
|
|
|
minimum: 1
|
|
"""
|
|
|
|
rep_pen_range: Optional[int] = 1024
|
|
"""Repetition penalty range.
|
|
|
|
minimum: 0
|
|
"""
|
|
|
|
rep_pen_slope: Optional[float] = 0.9
|
|
"""Repetition penalty slope.
|
|
|
|
minimum: 0
|
|
"""
|
|
|
|
temperature: Optional[float] = 0.6
|
|
"""Temperature value.
|
|
|
|
exclusiveMinimum: 0
|
|
"""
|
|
|
|
tfs: Optional[float] = 0.9
|
|
"""Tail free sampling value.
|
|
|
|
maximum: 1
|
|
minimum: 0
|
|
"""
|
|
|
|
top_a: Optional[float] = 0.9
|
|
"""Top-a sampling value.
|
|
|
|
minimum: 0
|
|
"""
|
|
|
|
top_p: Optional[float] = 0.95
|
|
"""Top-p sampling value.
|
|
|
|
maximum: 1
|
|
minimum: 0
|
|
"""
|
|
|
|
top_k: Optional[int] = 0
|
|
"""Top-k sampling value.
|
|
|
|
minimum: 0
|
|
"""
|
|
|
|
typical: Optional[float] = 0.5
|
|
"""Typical sampling value.
|
|
|
|
maximum: 1
|
|
minimum: 0
|
|
"""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "koboldai"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call the API and return the output.
|
|
|
|
Args:
|
|
prompt: The prompt to use for generation.
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
Returns:
|
|
The generated text.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import KoboldApiLLM
|
|
|
|
llm = KoboldApiLLM(endpoint="http://localhost:5000")
|
|
llm.invoke("Write a story about dragons.")
|
|
"""
|
|
data: Dict[str, Any] = {
|
|
"prompt": prompt,
|
|
"use_story": self.use_story,
|
|
"use_authors_note": self.use_authors_note,
|
|
"use_world_info": self.use_world_info,
|
|
"use_memory": self.use_memory,
|
|
"max_context_length": self.max_context_length,
|
|
"max_length": self.max_length,
|
|
"rep_pen": self.rep_pen,
|
|
"rep_pen_range": self.rep_pen_range,
|
|
"rep_pen_slope": self.rep_pen_slope,
|
|
"temperature": self.temperature,
|
|
"tfs": self.tfs,
|
|
"top_a": self.top_a,
|
|
"top_p": self.top_p,
|
|
"top_k": self.top_k,
|
|
"typical": self.typical,
|
|
}
|
|
|
|
if stop is not None:
|
|
data["stop_sequence"] = stop
|
|
|
|
response = requests.post(
|
|
f"{clean_url(self.endpoint)}/api/v1/generate", json=data
|
|
)
|
|
|
|
response.raise_for_status()
|
|
json_response = response.json()
|
|
|
|
if (
|
|
"results" in json_response
|
|
and len(json_response["results"]) > 0
|
|
and "text" in json_response["results"][0]
|
|
):
|
|
text = json_response["results"][0]["text"].strip()
|
|
|
|
if stop is not None:
|
|
for sequence in stop:
|
|
if text.endswith(sequence):
|
|
text = text[: -len(sequence)].rstrip()
|
|
|
|
return text
|
|
else:
|
|
raise ValueError(
|
|
f"Unexpected response format from Kobold API: {json_response}"
|
|
)
|