mirror of
https://github.com/hwchase17/langchain
synced 2024-11-13 19:10:52 +00:00
481d3855dc
- `llm(prompt)` -> `llm.invoke(prompt)` - `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`) - `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt, config={"callbacks": callbacks})` - `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
141 lines
4.1 KiB
Python
141 lines
4.1 KiB
Python
from functools import partial
|
|
from typing import Any, Dict, List, Optional, Sequence
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import root_validator
|
|
|
|
|
|
class CTransformers(LLM):
|
|
"""C Transformers LLM models.
|
|
|
|
To use, you should have the ``ctransformers`` python package installed.
|
|
See https://github.com/marella/ctransformers
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import CTransformers
|
|
|
|
llm = CTransformers(model="/path/to/ggml-gpt-2.bin", model_type="gpt2")
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
|
|
model: str
|
|
"""The path to a model file or directory or the name of a Hugging Face Hub
|
|
model repo."""
|
|
|
|
model_type: Optional[str] = None
|
|
"""The model type."""
|
|
|
|
model_file: Optional[str] = None
|
|
"""The name of the model file in repo or directory."""
|
|
|
|
config: Optional[Dict[str, Any]] = None
|
|
"""The config parameters.
|
|
See https://github.com/marella/ctransformers#config"""
|
|
|
|
lib: Optional[str] = None
|
|
"""The path to a shared library or one of `avx2`, `avx`, `basic`."""
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model": self.model,
|
|
"model_type": self.model_type,
|
|
"model_file": self.model_file,
|
|
"config": self.config,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "ctransformers"
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that ``ctransformers`` package is installed."""
|
|
try:
|
|
from ctransformers import AutoModelForCausalLM
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import `ctransformers` package. "
|
|
"Please install it with `pip install ctransformers`"
|
|
)
|
|
|
|
config = values["config"] or {}
|
|
values["client"] = AutoModelForCausalLM.from_pretrained(
|
|
values["model"],
|
|
model_type=values["model_type"],
|
|
model_file=values["model_file"],
|
|
lib=values["lib"],
|
|
**config,
|
|
)
|
|
return values
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[Sequence[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Generate text from a prompt.
|
|
|
|
Args:
|
|
prompt: The prompt to generate text from.
|
|
stop: A list of sequences to stop generation when encountered.
|
|
|
|
Returns:
|
|
The generated text.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = llm.invoke("Tell me a joke.")
|
|
"""
|
|
text = []
|
|
_run_manager = run_manager or CallbackManagerForLLMRun.get_noop_manager()
|
|
for chunk in self.client(prompt, stop=stop, stream=True):
|
|
text.append(chunk)
|
|
_run_manager.on_llm_new_token(chunk, verbose=self.verbose)
|
|
return "".join(text)
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Asynchronous Call out to CTransformers generate method.
|
|
Very helpful when streaming (like with websockets!)
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: A list of strings to stop generation when encountered.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
response = llm.invoke("Once upon a time, ")
|
|
"""
|
|
text_callback = None
|
|
if run_manager:
|
|
text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
|
|
|
|
text = ""
|
|
for token in self.client(prompt, stop=stop, stream=True):
|
|
if text_callback:
|
|
await text_callback(token)
|
|
text += token
|
|
|
|
return text
|