mirror of
https://github.com/hwchase17/langchain
synced 2024-11-13 19:10:52 +00:00
481d3855dc
- `llm(prompt)` -> `llm.invoke(prompt)` - `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`) - `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt, config={"callbacks": callbacks})` - `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
130 lines
3.9 KiB
Python
130 lines
3.9 KiB
Python
import logging
|
|
from typing import Any, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatGLM(LLM):
|
|
"""ChatGLM LLM service.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import ChatGLM
|
|
endpoint_url = (
|
|
"http://127.0.0.1:8000"
|
|
)
|
|
ChatGLM_llm = ChatGLM(
|
|
endpoint_url=endpoint_url
|
|
)
|
|
"""
|
|
|
|
endpoint_url: str = "http://127.0.0.1:8000/"
|
|
"""Endpoint URL to use."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
max_token: int = 20000
|
|
"""Max token allowed to pass to the model."""
|
|
temperature: float = 0.1
|
|
"""LLM model temperature from 0 to 10."""
|
|
history: List[List] = []
|
|
"""History of the conversation"""
|
|
top_p: float = 0.7
|
|
"""Top P for nucleus sampling from 0 to 1"""
|
|
with_history: bool = False
|
|
"""Whether to use history or not"""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "chat_glm"
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"endpoint_url": self.endpoint_url},
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to a ChatGLM LLM inference endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = chatglm_llm.invoke("Who are you?")
|
|
"""
|
|
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
# HTTP headers for authorization
|
|
headers = {"Content-Type": "application/json"}
|
|
|
|
payload = {
|
|
"prompt": prompt,
|
|
"temperature": self.temperature,
|
|
"history": self.history,
|
|
"max_length": self.max_token,
|
|
"top_p": self.top_p,
|
|
}
|
|
payload.update(_model_kwargs)
|
|
payload.update(kwargs)
|
|
|
|
logger.debug(f"ChatGLM payload: {payload}")
|
|
|
|
# call api
|
|
try:
|
|
response = requests.post(self.endpoint_url, headers=headers, json=payload)
|
|
except requests.exceptions.RequestException as e:
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
|
|
logger.debug(f"ChatGLM response: {response}")
|
|
|
|
if response.status_code != 200:
|
|
raise ValueError(f"Failed with response: {response}")
|
|
|
|
try:
|
|
parsed_response = response.json()
|
|
|
|
# Check if response content does exists
|
|
if isinstance(parsed_response, dict):
|
|
content_keys = "response"
|
|
if content_keys in parsed_response:
|
|
text = parsed_response[content_keys]
|
|
else:
|
|
raise ValueError(f"No content in response : {parsed_response}")
|
|
else:
|
|
raise ValueError(f"Unexpected response type: {parsed_response}")
|
|
|
|
except requests.exceptions.JSONDecodeError as e:
|
|
raise ValueError(
|
|
f"Error raised during decoding response from inference endpoint: {e}."
|
|
f"\nResponse: {response.text}"
|
|
)
|
|
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
if self.with_history:
|
|
self.history = parsed_response["history"]
|
|
return text
|