langchain/templates/neo4j-advanced-rag/neo4j_advanced_rag/retrievers.py
Bagatur fa5d49f2c1
docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00

50 lines
1.3 KiB
Python

from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Neo4jVector
# Typical RAG retriever
typical_rag = Neo4jVector.from_existing_index(
OpenAIEmbeddings(), index_name="typical_rag"
)
# Parent retriever
parent_query = """
MATCH (node)<-[:HAS_CHILD]-(parent)
WITH parent, max(score) AS score // deduplicate parents
RETURN parent.text AS text, score, {} AS metadata LIMIT 1
"""
parent_vectorstore = Neo4jVector.from_existing_index(
OpenAIEmbeddings(),
index_name="parent_document",
retrieval_query=parent_query,
)
# Hypothetic questions retriever
hypothetic_question_query = """
MATCH (node)<-[:HAS_QUESTION]-(parent)
WITH parent, max(score) AS score // deduplicate parents
RETURN parent.text AS text, score, {} AS metadata
"""
hypothetic_question_vectorstore = Neo4jVector.from_existing_index(
OpenAIEmbeddings(),
index_name="hypothetical_questions",
retrieval_query=hypothetic_question_query,
)
# Summary retriever
summary_query = """
MATCH (node)<-[:HAS_SUMMARY]-(parent)
WITH parent, max(score) AS score // deduplicate parents
RETURN parent.text AS text, score, {} AS metadata
"""
summary_vectorstore = Neo4jVector.from_existing_index(
OpenAIEmbeddings(),
index_name="summary",
retrieval_query=summary_query,
)