mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
184 lines
5.5 KiB
Plaintext
184 lines
5.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1edb9e6b",
|
|
"metadata": {},
|
|
"source": [
|
|
"# ChatGPT Plugin\n",
|
|
"\n",
|
|
">[OpenAI plugins](https://platform.openai.com/docs/plugins/introduction) connect ChatGPT to third-party applications. These plugins enable ChatGPT to interact with APIs defined by developers, enhancing ChatGPT's capabilities and allowing it to perform a wide range of actions.\n",
|
|
"\n",
|
|
">Plugins can allow ChatGPT to do things like:\n",
|
|
">- Retrieve real-time information; e.g., sports scores, stock prices, the latest news, etc.\n",
|
|
">- Retrieve knowledge-base information; e.g., company docs, personal notes, etc.\n",
|
|
">- Perform actions on behalf of the user; e.g., booking a flight, ordering food, etc.\n",
|
|
"\n",
|
|
"This notebook shows how to use the ChatGPT Retriever Plugin within LangChain."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "bbe89ca0",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# STEP 1: Load\n",
|
|
"\n",
|
|
"# Load documents using LangChain's DocumentLoaders\n",
|
|
"# This is from https://langchain.readthedocs.io/en/latest/modules/document_loaders/examples/csv.html\n",
|
|
"\n",
|
|
"from langchain.document_loaders.csv_loader import CSVLoader\n",
|
|
"\n",
|
|
"loader = CSVLoader(\n",
|
|
" file_path=\"../../document_loaders/examples/example_data/mlb_teams_2012.csv\"\n",
|
|
")\n",
|
|
"data = loader.load()\n",
|
|
"\n",
|
|
"\n",
|
|
"# STEP 2: Convert\n",
|
|
"\n",
|
|
"# Convert Document to format expected by https://github.com/openai/chatgpt-retrieval-plugin\n",
|
|
"from typing import List\n",
|
|
"from langchain.docstore.document import Document\n",
|
|
"import json\n",
|
|
"\n",
|
|
"\n",
|
|
"def write_json(path: str, documents: List[Document]) -> None:\n",
|
|
" results = [{\"text\": doc.page_content} for doc in documents]\n",
|
|
" with open(path, \"w\") as f:\n",
|
|
" json.dump(results, f, indent=2)\n",
|
|
"\n",
|
|
"\n",
|
|
"write_json(\"foo.json\", data)\n",
|
|
"\n",
|
|
"# STEP 3: Use\n",
|
|
"\n",
|
|
"# Ingest this as you would any other json file in https://github.com/openai/chatgpt-retrieval-plugin/tree/main/scripts/process_json"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0474661d",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Using the ChatGPT Retriever Plugin\n",
|
|
"\n",
|
|
"Okay, so we've created the ChatGPT Retriever Plugin, but how do we actually use it?\n",
|
|
"\n",
|
|
"The below code walks through how to do that."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fb27da9f-d574-425d-8fab-92b03b997568",
|
|
"metadata": {},
|
|
"source": [
|
|
"We want to use `ChatGPTPluginRetriever` so we have to get the OpenAI API Key."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "b5d8c9e9-839f-42e9-933a-08195797dd4c",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdin",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"OpenAI API Key: ········\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import os\n",
|
|
"import getpass\n",
|
|
"\n",
|
|
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "39d6074e",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.retrievers import ChatGPTPluginRetriever"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "33fd23d1",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever = ChatGPTPluginRetriever(url=\"http://0.0.0.0:8000\", bearer_token=\"foo\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "16250bdf",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content=\"This is Alice's phone number: 123-456-7890\", lookup_str='', metadata={'id': '456_0', 'metadata': {'source': 'email', 'source_id': '567', 'url': None, 'created_at': '1609592400.0', 'author': 'Alice', 'document_id': '456'}, 'embedding': None, 'score': 0.925571561}, lookup_index=0),\n",
|
|
" Document(page_content='This is a document about something', lookup_str='', metadata={'id': '123_0', 'metadata': {'source': 'file', 'source_id': 'https://example.com/doc1', 'url': 'https://example.com/doc1', 'created_at': '1609502400.0', 'author': 'Alice', 'document_id': '123'}, 'embedding': None, 'score': 0.6987589}, lookup_index=0),\n",
|
|
" Document(page_content='Team: Angels \"Payroll (millions)\": 154.49 \"Wins\": 89', lookup_str='', metadata={'id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631_0', 'metadata': {'source': None, 'source_id': None, 'url': None, 'created_at': None, 'author': None, 'document_id': '59c2c0c1-ae3f-4272-a1da-f44a723ea631'}, 'embedding': None, 'score': 0.697888613}, lookup_index=0)]"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"retriever.get_relevant_documents(\"alice's phone number\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c8b5794b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|