mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
21c1ce0bc1
```python from langchain.agents import AgentExecutor, create_tool_calling_agent, tool from langchain_anthropic import ChatAnthropic from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant"), MessagesPlaceholder("chat_history", optional=True), ("human", "{input}"), MessagesPlaceholder("agent_scratchpad"), ] ) model = ChatAnthropic(model="claude-3-opus-20240229") @tool def magic_function(input: int) -> int: """Applies a magic function to an input.""" return input + 2 tools = [magic_function] agent = create_tool_calling_agent(model, tools, prompt) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) agent_executor.invoke({"input": "what is the value of magic_function(3)?"}) ``` ``` > Entering new AgentExecutor chain... Invoking: `magic_function` with `{'input': 3}` responded: [{'text': '<thinking>\nThe user has asked for the value of magic_function applied to the input 3. Looking at the available tools, magic_function is the relevant one to use here, as it takes an integer input and returns an integer output.\n\nThe magic_function has one required parameter:\n- input (integer)\n\nThe user has directly provided the value 3 for the input parameter. Since the required parameter is present, we can proceed with calling the function.\n</thinking>', 'type': 'text'}, {'id': 'toolu_01HsTheJPA5mcipuFDBbJ1CW', 'input': {'input': 3}, 'name': 'magic_function', 'type': 'tool_use'}] 5 Therefore, the value of magic_function(3) is 5. > Finished chain. {'input': 'what is the value of magic_function(3)?', 'output': 'Therefore, the value of magic_function(3) is 5.'} ``` --------- Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> |
||
---|---|---|
.. | ||
__init__.py | ||
dump.py | ||
load.py | ||
mapping.py | ||
serializable.py |