mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
7652d2abb0
Add Multi-CSV/DF support in CSV and DataFrame Toolkits * CSV and DataFrame toolkits now accept list of CSVs/DFs * Add default prompts for many dataframes in `pandas_dataframe` toolkit Fixes #1958 Potentially fixes #4423 ## Testing * Add single and multi-dataframe integration tests for `pandas_dataframe` toolkit with permutations of `include_df_in_prompt` * Add single and multi-CSV integration tests for csv toolkit --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
71 lines
2.3 KiB
Python
71 lines
2.3 KiB
Python
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from pandas import DataFrame
|
|
|
|
from langchain.agents import create_pandas_dataframe_agent
|
|
from langchain.agents.agent import AgentExecutor
|
|
from langchain.llms import OpenAI
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def df() -> DataFrame:
|
|
random_data = np.random.rand(4, 4)
|
|
df = DataFrame(random_data, columns=["name", "age", "food", "sport"])
|
|
return df
|
|
|
|
|
|
# Figure out type hint here
|
|
@pytest.fixture(scope="module")
|
|
def df_list() -> list:
|
|
random_data = np.random.rand(4, 4)
|
|
df1 = DataFrame(random_data, columns=["name", "age", "food", "sport"])
|
|
random_data = np.random.rand(2, 2)
|
|
df2 = DataFrame(random_data, columns=["name", "height"])
|
|
df_list = [df1, df2]
|
|
return df_list
|
|
|
|
|
|
def test_pandas_agent_creation(df: DataFrame) -> None:
|
|
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df)
|
|
assert isinstance(agent, AgentExecutor)
|
|
|
|
|
|
def test_data_reading(df: DataFrame) -> None:
|
|
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df)
|
|
assert isinstance(agent, AgentExecutor)
|
|
response = agent.run("how many rows in df? Give me a number.")
|
|
result = re.search(rf".*({df.shape[0]}).*", response)
|
|
assert result is not None
|
|
assert result.group(1) is not None
|
|
|
|
|
|
def test_data_reading_no_df_in_prompt(df: DataFrame) -> None:
|
|
agent = create_pandas_dataframe_agent(
|
|
OpenAI(temperature=0), df, include_df_in_prompt=False
|
|
)
|
|
assert isinstance(agent, AgentExecutor)
|
|
response = agent.run("how many rows in df? Give me a number.")
|
|
result = re.search(rf".*({df.shape[0]}).*", response)
|
|
assert result is not None
|
|
assert result.group(1) is not None
|
|
|
|
|
|
def test_multi_df(df_list: list) -> None:
|
|
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df_list, verbose=True)
|
|
response = agent.run("how many total rows in the two dataframes? Give me a number.")
|
|
result = re.search(r".*(6).*", response)
|
|
assert result is not None
|
|
assert result.group(1) is not None
|
|
|
|
|
|
def test_multi_df_no_df_in_prompt(df_list: list) -> None:
|
|
agent = create_pandas_dataframe_agent(
|
|
OpenAI(temperature=0), df_list, include_df_in_prompt=False
|
|
)
|
|
response = agent.run("how many total rows in the two dataframes? Give me a number.")
|
|
result = re.search(r".*(6).*", response)
|
|
assert result is not None
|
|
assert result.group(1) is not None
|