langchain/libs/community/langchain_community/utilities/apify.py
Charles John 2d81a72884
community: fix missing apify_api_token field in ApifyWrapper (#22421)
- **Description:** The `ApifyWrapper` class expects `apify_api_token` to
be passed as a named parameter or set as an environment variable. But
the corresponding field was missing in the class definition causing the
argument to be ignored when passed as a named param. This patch fixes
that.
2024-06-03 14:32:57 +00:00

216 lines
8.7 KiB
Python

from typing import TYPE_CHECKING, Any, Callable, Dict, Optional
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import BaseModel, root_validator
from langchain_core.utils import get_from_dict_or_env
if TYPE_CHECKING:
from langchain_community.document_loaders import ApifyDatasetLoader
class ApifyWrapper(BaseModel):
"""Wrapper around Apify.
To use, you should have the ``apify-client`` python package installed,
and the environment variable ``APIFY_API_TOKEN`` set with your API key, or pass
`apify_api_token` as a named parameter to the constructor.
"""
apify_client: Any
apify_client_async: Any
apify_api_token: Optional[str] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate environment.
Validate that an Apify API token is set and the apify-client
Python package exists in the current environment.
"""
apify_api_token = get_from_dict_or_env(
values, "apify_api_token", "APIFY_API_TOKEN"
)
try:
from apify_client import ApifyClient, ApifyClientAsync
client = ApifyClient(apify_api_token)
if httpx_client := getattr(client.http_client, "httpx_client"):
httpx_client.headers["user-agent"] += "; Origin/langchain"
async_client = ApifyClientAsync(apify_api_token)
if httpx_async_client := getattr(
async_client.http_client, "httpx_async_client"
):
httpx_async_client.headers["user-agent"] += "; Origin/langchain"
values["apify_client"] = client
values["apify_client_async"] = async_client
except ImportError:
raise ImportError(
"Could not import apify-client Python package. "
"Please install it with `pip install apify-client`."
)
return values
def call_actor(
self,
actor_id: str,
run_input: Dict,
dataset_mapping_function: Callable[[Dict], Document],
*,
build: Optional[str] = None,
memory_mbytes: Optional[int] = None,
timeout_secs: Optional[int] = None,
) -> "ApifyDatasetLoader":
"""Run an Actor on the Apify platform and wait for results to be ready.
Args:
actor_id (str): The ID or name of the Actor on the Apify platform.
run_input (Dict): The input object of the Actor that you're trying to run.
dataset_mapping_function (Callable): A function that takes a single
dictionary (an Apify dataset item) and converts it to an
instance of the Document class.
build (str, optional): Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional): Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional): Optional timeout for the run, in seconds.
Returns:
ApifyDatasetLoader: A loader that will fetch the records from the
Actor run's default dataset.
"""
from langchain_community.document_loaders import ApifyDatasetLoader
actor_call = self.apify_client.actor(actor_id).call(
run_input=run_input,
build=build,
memory_mbytes=memory_mbytes,
timeout_secs=timeout_secs,
)
return ApifyDatasetLoader(
dataset_id=actor_call["defaultDatasetId"],
dataset_mapping_function=dataset_mapping_function,
)
async def acall_actor(
self,
actor_id: str,
run_input: Dict,
dataset_mapping_function: Callable[[Dict], Document],
*,
build: Optional[str] = None,
memory_mbytes: Optional[int] = None,
timeout_secs: Optional[int] = None,
) -> "ApifyDatasetLoader":
"""Run an Actor on the Apify platform and wait for results to be ready.
Args:
actor_id (str): The ID or name of the Actor on the Apify platform.
run_input (Dict): The input object of the Actor that you're trying to run.
dataset_mapping_function (Callable): A function that takes a single
dictionary (an Apify dataset item) and converts it to
an instance of the Document class.
build (str, optional): Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional): Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional): Optional timeout for the run, in seconds.
Returns:
ApifyDatasetLoader: A loader that will fetch the records from the
Actor run's default dataset.
"""
from langchain_community.document_loaders import ApifyDatasetLoader
actor_call = await self.apify_client_async.actor(actor_id).call(
run_input=run_input,
build=build,
memory_mbytes=memory_mbytes,
timeout_secs=timeout_secs,
)
return ApifyDatasetLoader(
dataset_id=actor_call["defaultDatasetId"],
dataset_mapping_function=dataset_mapping_function,
)
def call_actor_task(
self,
task_id: str,
task_input: Dict,
dataset_mapping_function: Callable[[Dict], Document],
*,
build: Optional[str] = None,
memory_mbytes: Optional[int] = None,
timeout_secs: Optional[int] = None,
) -> "ApifyDatasetLoader":
"""Run a saved Actor task on Apify and wait for results to be ready.
Args:
task_id (str): The ID or name of the task on the Apify platform.
task_input (Dict): The input object of the task that you're trying to run.
Overrides the task's saved input.
dataset_mapping_function (Callable): A function that takes a single
dictionary (an Apify dataset item) and converts it to an
instance of the Document class.
build (str, optional): Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional): Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional): Optional timeout for the run, in seconds.
Returns:
ApifyDatasetLoader: A loader that will fetch the records from the
task run's default dataset.
"""
from langchain_community.document_loaders import ApifyDatasetLoader
task_call = self.apify_client.task(task_id).call(
task_input=task_input,
build=build,
memory_mbytes=memory_mbytes,
timeout_secs=timeout_secs,
)
return ApifyDatasetLoader(
dataset_id=task_call["defaultDatasetId"],
dataset_mapping_function=dataset_mapping_function,
)
async def acall_actor_task(
self,
task_id: str,
task_input: Dict,
dataset_mapping_function: Callable[[Dict], Document],
*,
build: Optional[str] = None,
memory_mbytes: Optional[int] = None,
timeout_secs: Optional[int] = None,
) -> "ApifyDatasetLoader":
"""Run a saved Actor task on Apify and wait for results to be ready.
Args:
task_id (str): The ID or name of the task on the Apify platform.
task_input (Dict): The input object of the task that you're trying to run.
Overrides the task's saved input.
dataset_mapping_function (Callable): A function that takes a single
dictionary (an Apify dataset item) and converts it to an
instance of the Document class.
build (str, optional): Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional): Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional): Optional timeout for the run, in seconds.
Returns:
ApifyDatasetLoader: A loader that will fetch the records from the
task run's default dataset.
"""
from langchain_community.document_loaders import ApifyDatasetLoader
task_call = await self.apify_client_async.task(task_id).call(
task_input=task_input,
build=build,
memory_mbytes=memory_mbytes,
timeout_secs=timeout_secs,
)
return ApifyDatasetLoader(
dataset_id=task_call["defaultDatasetId"],
dataset_mapping_function=dataset_mapping_function,
)