mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
c6b7db6587
- **Support batch size** Baichuan updates the document, indicating that up to 16 documents can be imported at a time - **Standardized model init arg names** - baichuan_api_key -> api_key - model_name -> model
140 lines
5.4 KiB
Python
140 lines
5.4 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
import requests
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from requests import RequestException
|
|
|
|
BAICHUAN_API_URL: str = "http://api.baichuan-ai.com/v1/embeddings"
|
|
|
|
# BaichuanTextEmbeddings is an embedding model provided by Baichuan Inc. (https://www.baichuan-ai.com/home).
|
|
# As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB
|
|
# (Chinese Multi-Task Embedding Benchmark) leaderboard.
|
|
# Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard
|
|
|
|
# Official Website: https://platform.baichuan-ai.com/docs/text-Embedding
|
|
# An API-key is required to use this embedding model. You can get one by registering
|
|
# at https://platform.baichuan-ai.com/docs/text-Embedding.
|
|
# BaichuanTextEmbeddings support 512 token window and preduces vectors with
|
|
# 1024 dimensions.
|
|
|
|
|
|
# NOTE!! BaichuanTextEmbeddings only supports Chinese text embedding.
|
|
# Multi-language support is coming soon.
|
|
class BaichuanTextEmbeddings(BaseModel, Embeddings):
|
|
"""Baichuan Text Embedding models.
|
|
|
|
To use, you should set the environment variable ``BAICHUAN_API_KEY`` to
|
|
your API key or pass it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.embeddings import BaichuanTextEmbeddings
|
|
|
|
baichuan = BaichuanTextEmbeddings(baichuan_api_key="my-api-key")
|
|
"""
|
|
|
|
session: Any #: :meta private:
|
|
model_name: str = Field(default="Baichuan-Text-Embedding", alias="model")
|
|
baichuan_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
|
|
"""Automatically inferred from env var `BAICHUAN_API_KEY` if not provided."""
|
|
chunk_size: int = 16
|
|
"""Chunk size when multiple texts are input"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@root_validator(allow_reuse=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that auth token exists in environment."""
|
|
try:
|
|
baichuan_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "baichuan_api_key", "BAICHUAN_API_KEY")
|
|
)
|
|
except ValueError as original_exc:
|
|
try:
|
|
baichuan_api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values, "baichuan_auth_token", "BAICHUAN_AUTH_TOKEN"
|
|
)
|
|
)
|
|
except ValueError:
|
|
raise original_exc
|
|
session = requests.Session()
|
|
session.headers.update(
|
|
{
|
|
"Authorization": f"Bearer {baichuan_api_key.get_secret_value()}",
|
|
"Accept-Encoding": "identity",
|
|
"Content-type": "application/json",
|
|
}
|
|
)
|
|
values["session"] = session
|
|
return values
|
|
|
|
def _embed(self, texts: List[str]) -> Optional[List[List[float]]]:
|
|
"""Internal method to call Baichuan Embedding API and return embeddings.
|
|
|
|
Args:
|
|
texts: A list of texts to embed.
|
|
|
|
Returns:
|
|
A list of list of floats representing the embeddings, or None if an
|
|
error occurs.
|
|
"""
|
|
chunk_texts = [
|
|
texts[i : i + self.chunk_size]
|
|
for i in range(0, len(texts), self.chunk_size)
|
|
]
|
|
embed_results = []
|
|
for chunk in chunk_texts:
|
|
response = self.session.post(
|
|
BAICHUAN_API_URL, json={"input": chunk, "model": self.model_name}
|
|
)
|
|
# Raise exception if response status code from 400 to 600
|
|
response.raise_for_status()
|
|
# Check if the response status code indicates success
|
|
if response.status_code == 200:
|
|
resp = response.json()
|
|
embeddings = resp.get("data", [])
|
|
# Sort resulting embeddings by index
|
|
sorted_embeddings = sorted(embeddings, key=lambda e: e.get("index", 0))
|
|
# Return just the embeddings
|
|
embed_results.extend(
|
|
[result.get("embedding", []) for result in sorted_embeddings]
|
|
)
|
|
else:
|
|
# Log error or handle unsuccessful response appropriately
|
|
# Handle 100 <= status_code < 400, not include 200
|
|
raise RequestException(
|
|
f"Error: Received status code {response.status_code} from "
|
|
"`BaichuanEmbedding` API"
|
|
)
|
|
return embed_results
|
|
|
|
def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]: # type: ignore[override]
|
|
"""Public method to get embeddings for a list of documents.
|
|
|
|
Args:
|
|
texts: The list of texts to embed.
|
|
|
|
Returns:
|
|
A list of embeddings, one for each text, or None if an error occurs.
|
|
"""
|
|
return self._embed(texts)
|
|
|
|
def embed_query(self, text: str) -> Optional[List[float]]: # type: ignore[override]
|
|
"""Public method to get embedding for a single query text.
|
|
|
|
Args:
|
|
text: The text to embed.
|
|
|
|
Returns:
|
|
Embeddings for the text, or None if an error occurs.
|
|
"""
|
|
result = self._embed([text])
|
|
return result[0] if result is not None else None
|