mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
dff24285ea
This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com> |
||
---|---|---|
.. | ||
langchain_experimental | ||
tests | ||
Makefile | ||
poetry.lock | ||
poetry.toml | ||
pyproject.toml | ||
README.md |
🦜️🧪 LangChain Experimental
This package holds experimental LangChain code, intended for research and experimental uses.
Warning
Portions of the code in this package may be dangerous if not properly deployed in a sandboxed environment. Please be wary of deploying experimental code to production unless you've taken appropriate precautions and have already discussed it with your security team.
Some of the code here may be marked with security notices. However, given the exploratory and experimental nature of the code in this package, the lack of a security notice on a piece of code does not mean that the code in question does not require additional security considerations in order to be safe to use.