langchain/docs/extras/integrations/llms/bedrock.ipynb
2023-07-23 23:23:16 -07:00

89 lines
1.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Bedrock"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.llms.bedrock import Bedrock\n",
"\n",
"llm = Bedrock(\n",
" credentials_profile_name=\"bedrock-admin\",\n",
" model_id=\"amazon.titan-tg1-large\",\n",
" endpoint_url=\"custom_endpoint_url\",\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using in a conversation chain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import ConversationChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"\n",
"conversation = ConversationChain(\n",
" llm=llm, verbose=True, memory=ConversationBufferMemory()\n",
")\n",
"\n",
"conversation.predict(input=\"Hi there!\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}