langchain/libs/experimental/langchain_experimental/llms/anthropic_functions.py
Nuno Campos c0d67420e5
Use a submodule for pydantic v1 compat (#9371)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-17 16:35:49 +01:00

208 lines
7.4 KiB
Python

import json
from collections import defaultdict
from html.parser import HTMLParser
from typing import Any, DefaultDict, Dict, List, Optional
from langchain.callbacks.manager import (
CallbackManagerForLLMRun,
Callbacks,
)
from langchain.chat_models.anthropic import ChatAnthropic
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
ChatGeneration,
ChatResult,
LLMResult,
)
from langchain.schema.messages import (
AIMessage,
BaseMessage,
SystemMessage,
)
from langchain_experimental.pydantic_v1 import root_validator
prompt = """In addition to responding, you can use tools. \
You have access to the following tools.
{tools}
In order to use a tool, you can use <tool></tool> to specify the name, \
and the <tool_input></tool_input> tags to specify the parameters. \
Each parameter should be passed in as <$param_name>$value</$param_name>, \
Where $param_name is the name of the specific parameter, and $value \
is the value for that parameter.
You will then get back a response in the form <observation></observation>
For example, if you have a tool called 'search' that accepts a single \
parameter 'query' that could run a google search, in order to search \
for the weather in SF you would respond:
<tool>search</tool><tool_input><query>weather in SF</query></tool_input>
<observation>64 degrees</observation>"""
class TagParser(HTMLParser):
def __init__(self) -> None:
"""A heavy-handed solution, but it's fast for prototyping.
Might be re-implemented later to restrict scope to the limited grammar, and
more efficiency.
Uses an HTML parser to parse a limited grammar that allows
for syntax of the form:
INPUT -> JUNK? VALUE*
JUNK -> JUNK_CHARACTER+
JUNK_CHARACTER -> whitespace | ,
VALUE -> <IDENTIFIER>DATA</IDENTIFIER> | OBJECT
OBJECT -> <IDENTIFIER>VALUE+</IDENTIFIER>
IDENTIFIER -> [a-Z][a-Z0-9_]*
DATA -> .*
Interprets the data to allow repetition of tags and recursion
to support representation of complex types.
^ Just another approximately wrong grammar specification.
"""
super().__init__()
self.parse_data: DefaultDict[str, List[Any]] = defaultdict(list)
self.stack: List[DefaultDict[str, List[str]]] = [self.parse_data]
self.success = True
self.depth = 0
self.data: Optional[str] = None
def handle_starttag(self, tag: str, attrs: Any) -> None:
"""Hook when a new tag is encountered."""
self.depth += 1
self.stack.append(defaultdict(list))
self.data = None
def handle_endtag(self, tag: str) -> None:
"""Hook when a tag is closed."""
self.depth -= 1
top_of_stack = dict(self.stack.pop(-1)) # Pop the dictionary we don't need it
# If a lead node
is_leaf = self.data is not None
# Annoying to type here, code is tested, hopefully OK
value = self.data if is_leaf else top_of_stack
# Difficult to type this correctly with mypy (maybe impossible?)
# Can be nested indefinitely, so requires self referencing type
self.stack[-1][tag].append(value) # type: ignore
# Reset the data so we if we encounter a sequence of end tags, we
# don't confuse an outer end tag for belonging to a leaf node.
self.data = None
def handle_data(self, data: str) -> None:
"""Hook when handling data."""
stripped_data = data.strip()
# The only data that's allowed is whitespace or a comma surrounded by whitespace
if self.depth == 0 and stripped_data not in (",", ""):
# If this is triggered the parse should be considered invalid.
self.success = False
if stripped_data: # ignore whitespace-only strings
self.data = stripped_data
def _destrip(tool_input: Any) -> Any:
if isinstance(tool_input, dict):
return {k: _destrip(v) for k, v in tool_input.items()}
elif isinstance(tool_input, list):
if isinstance(tool_input[0], str):
if len(tool_input) == 1:
return tool_input[0]
else:
raise ValueError
elif isinstance(tool_input[0], dict):
return [_destrip(v) for v in tool_input]
else:
raise ValueError
else:
raise ValueError
class AnthropicFunctions(BaseChatModel):
model: ChatAnthropic
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
return {"model": ChatAnthropic(**values)}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
forced = False
function_call = ""
if "functions" in kwargs:
content = prompt.format(tools=json.dumps(kwargs["functions"], indent=2))
system = SystemMessage(content=content)
messages = [system] + messages
del kwargs["functions"]
if stop is None:
stop = ["</tool_input>"]
else:
stop.append("</tool_input>")
if "function_call" in kwargs:
forced = True
function_call = kwargs["function_call"]["name"]
AIMessage(content=f"<tool>{function_call}</tool>")
del kwargs["function_call"]
else:
if "function_call" in kwargs:
raise ValueError(
"if `function_call` provided, `functions` must also be"
)
response = self.model.predict_messages(
messages, stop=stop, callbacks=run_manager, **kwargs
)
completion = response.content
if forced:
tag_parser = TagParser()
tag_parser.feed(completion.strip() + "</tool_input>")
v1 = tag_parser.parse_data["tool_input"][0]
kwargs = {
"function_call": {
"name": function_call,
"arguments": json.dumps(_destrip(v1)),
}
}
message = AIMessage(content="", additional_kwargs=kwargs)
return ChatResult(generations=[ChatGeneration(message=message)])
elif "<tool>" in completion:
tag_parser = TagParser()
tag_parser.feed(completion.strip() + "</tool_input>")
msg = completion.split("<tool>")[0]
v1 = tag_parser.parse_data["tool_input"][0]
kwargs = {
"function_call": {
"name": tag_parser.parse_data["tool"][0],
"arguments": json.dumps(_destrip(v1)),
}
}
message = AIMessage(content=msg, additional_kwargs=kwargs)
return ChatResult(generations=[ChatGeneration(message=message)])
else:
return ChatResult(generations=[ChatGeneration(message=response)])
async def agenerate(
self,
messages: List[List[BaseMessage]],
stop: Optional[List[str]] = None,
callbacks: Callbacks = None,
*,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> LLMResult:
raise NotImplementedError
@property
def _llm_type(self) -> str:
return "anthropic_functions"