langchain/libs/partners/anthropic/langchain_anthropic/experimental.py

311 lines
10 KiB
Python

import json
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Optional,
Sequence,
Type,
Union,
cast,
)
from langchain_core._api.beta_decorator import beta
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.messages import (
AIMessage,
BaseMessage,
BaseMessageChunk,
SystemMessage,
)
from langchain_core.output_parsers.openai_tools import (
JsonOutputKeyToolsParser,
PydanticToolsParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_anthropic.chat_models import ChatAnthropic
SYSTEM_PROMPT_FORMAT = """In this environment you have access to a set of tools you can use to answer the user's question.
You may call them like this:
<function_calls>
<invoke>
<tool_name>$TOOL_NAME</tool_name>
<parameters>
<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>
...
</parameters>
</invoke>
</function_calls>
Here are the tools available:
<tools>
{formatted_tools}
</tools>""" # noqa: E501
TOOL_FORMAT = """<tool_description>
<tool_name>{tool_name}</tool_name>
<description>{tool_description}</description>
<parameters>
{formatted_parameters}
</parameters>
</tool_description>"""
TOOL_PARAMETER_FORMAT = """<parameter>
<name>{parameter_name}</name>
<type>{parameter_type}</type>
<description>{parameter_description}</description>
</parameter>"""
def _get_type(parameter: Dict[str, Any]) -> str:
if "type" in parameter:
return parameter["type"]
if "anyOf" in parameter:
return json.dumps({"anyOf": parameter["anyOf"]})
if "allOf" in parameter:
return json.dumps({"allOf": parameter["allOf"]})
return json.dumps(parameter)
def get_system_message(tools: List[Dict]) -> str:
tools_data: List[Dict] = [
{
"tool_name": tool["name"],
"tool_description": tool["description"],
"formatted_parameters": "\n".join(
[
TOOL_PARAMETER_FORMAT.format(
parameter_name=name,
parameter_type=_get_type(parameter),
parameter_description=parameter.get("description"),
)
for name, parameter in tool["parameters"]["properties"].items()
]
),
}
for tool in tools
]
tools_formatted = "\n".join(
[
TOOL_FORMAT.format(
tool_name=tool["tool_name"],
tool_description=tool["tool_description"],
formatted_parameters=tool["formatted_parameters"],
)
for tool in tools_data
]
)
return SYSTEM_PROMPT_FORMAT.format(formatted_tools=tools_formatted)
def _xml_to_dict(t: Any) -> Union[str, Dict[str, Any]]:
# Base case: If the element has no children, return its text or an empty string.
if len(t) == 0:
return t.text or ""
# Recursive case: The element has children. Convert them into a dictionary.
d: Dict[str, Any] = {}
for child in t:
if child.tag not in d:
d[child.tag] = _xml_to_dict(child)
else:
# Handle multiple children with the same tag
if not isinstance(d[child.tag], list):
d[child.tag] = [d[child.tag]] # Convert existing entry into a list
d[child.tag].append(_xml_to_dict(child))
return d
def _xml_to_function_call(invoke: Any, tools: List[Dict]) -> Dict[str, Any]:
name = invoke.find("tool_name").text
arguments = _xml_to_dict(invoke.find("parameters"))
# make list elements in arguments actually lists
filtered_tools = [tool for tool in tools if tool["name"] == name]
if len(filtered_tools) > 0 and not isinstance(arguments, str):
tool = filtered_tools[0]
for key, value in arguments.items():
if key in tool["parameters"]["properties"]:
if "type" in tool["parameters"]["properties"][key]:
if tool["parameters"]["properties"][key][
"type"
] == "array" and not isinstance(value, list):
arguments[key] = [value]
if (
tool["parameters"]["properties"][key]["type"] != "object"
and isinstance(value, dict)
and len(value.keys()) == 1
):
arguments[key] = list(value.values())[0]
return {
"function": {
"name": name,
"arguments": json.dumps(arguments),
},
"type": "function",
}
def _xml_to_tool_calls(elem: Any, tools: List[Dict]) -> List[Dict[str, Any]]:
"""
Convert an XML element and its children into a dictionary of dictionaries.
"""
invokes = elem.findall("invoke")
return [_xml_to_function_call(invoke, tools) for invoke in invokes]
@beta()
class ChatAnthropicTools(ChatAnthropic):
"""Chat model for interacting with Anthropic functions."""
_xmllib: Any = Field(default=None)
@root_validator()
def check_xml_lib(cls, values: Dict[str, Any]) -> Dict[str, Any]:
try:
# do this as an optional dep for temporary nature of this feature
import defusedxml.ElementTree as DET # type: ignore
values["_xmllib"] = DET
except ImportError:
raise ImportError(
"Could not import defusedxml python package. "
"Please install it using `pip install defusedxml`"
)
return values
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], BaseTool]],
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
"""Bind tools to the chat model."""
formatted_tools = [convert_to_openai_function(tool) for tool in tools]
return super().bind(tools=formatted_tools, **kwargs)
def with_structured_output(
self, schema: Union[Dict, Type[BaseModel]], **kwargs: Any
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
if kwargs:
raise ValueError("kwargs are not supported for with_structured_output")
llm = self.bind_tools([schema])
if isinstance(schema, type) and issubclass(schema, BaseModel):
# schema is pydantic
return llm | PydanticToolsParser(tools=[schema], first_tool_only=True)
else:
# schema is dict
key_name = convert_to_openai_function(schema)["name"]
return llm | JsonOutputKeyToolsParser(
key_name=key_name, first_tool_only=True
)
def _format_params(
self,
*,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
**kwargs: Any,
) -> Dict:
tools: List[Dict] = kwargs.get("tools", None)
# experimental tools are sent in as part of system prompt, so if
# both are set, turn system prompt into tools + system prompt (tools first)
if tools:
tool_system = get_system_message(tools)
if messages[0].type == "system":
sys_content = messages[0].content
new_sys_content = f"{tool_system}\n\n{sys_content}"
messages = [SystemMessage(content=new_sys_content), *messages[1:]]
else:
messages = [SystemMessage(content=tool_system), *messages]
return super()._format_params(messages=messages, stop=stop, **kwargs)
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
# streaming not supported for functions
result = self._generate(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
to_yield = result.generations[0]
chunk = ChatGenerationChunk(
message=cast(BaseMessageChunk, to_yield.message),
generation_info=to_yield.generation_info,
)
if run_manager:
run_manager.on_llm_new_token(
cast(str, to_yield.message.content), chunk=chunk
)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
# streaming not supported for functions
result = await self._agenerate(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
to_yield = result.generations[0]
chunk = ChatGenerationChunk(
message=cast(BaseMessageChunk, to_yield.message),
generation_info=to_yield.generation_info,
)
if run_manager:
await run_manager.on_llm_new_token(
cast(str, to_yield.message.content), chunk=chunk
)
yield chunk
def _format_output(self, data: Any, **kwargs: Any) -> ChatResult:
"""Format the output of the model, parsing xml as a tool call."""
text = data.content[0].text
tools = kwargs.get("tools", None)
additional_kwargs: Dict[str, Any] = {}
if tools:
# parse out the xml from the text
try:
# get everything between <function_calls> and </function_calls>
start = text.find("<function_calls>")
end = text.find("</function_calls>") + len("</function_calls>")
xml_text = text[start:end]
xml = self._xmllib.fromstring(xml_text)
additional_kwargs["tool_calls"] = _xml_to_tool_calls(xml, tools)
text = ""
except Exception:
pass
return ChatResult(
generations=[
ChatGeneration(
message=AIMessage(content=text, additional_kwargs=additional_kwargs)
)
],
llm_output=data,
)