langchain/libs/community/langchain_community/llms/human.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

86 lines
2.5 KiB
Python

from typing import Any, Callable, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Field
from langchain_community.llms.utils import enforce_stop_tokens
def _display_prompt(prompt: str) -> None:
"""Displays the given prompt to the user."""
print(f"\n{prompt}")
def _collect_user_input(
separator: Optional[str] = None, stop: Optional[List[str]] = None
) -> str:
"""Collects and returns user input as a single string."""
separator = separator or "\n"
lines = []
while True:
line = input()
if not line:
break
lines.append(line)
if stop and any(seq in line for seq in stop):
break
# Combine all lines into a single string
multi_line_input = separator.join(lines)
return multi_line_input
class HumanInputLLM(LLM):
"""
It returns user input as the response.
"""
input_func: Callable = Field(default_factory=lambda: _collect_user_input)
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _display_prompt)
separator: str = "\n"
input_kwargs: Mapping[str, Any] = {}
prompt_kwargs: Mapping[str, Any] = {}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""
Returns an empty dictionary as there are no identifying parameters.
"""
return {}
@property
def _llm_type(self) -> str:
"""Returns the type of LLM."""
return "human-input"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""
Displays the prompt to the user and returns their input as a response.
Args:
prompt (str): The prompt to be displayed to the user.
stop (Optional[List[str]]): A list of stop strings.
run_manager (Optional[CallbackManagerForLLMRun]): Currently not used.
Returns:
str: The user's input as a response.
"""
self.prompt_func(prompt, **self.prompt_kwargs)
user_input = self.input_func(
separator=self.separator, stop=stop, **self.input_kwargs
)
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the human themselves
user_input = enforce_stop_tokens(user_input, stop)
return user_input