mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
165 lines
5.3 KiB
Python
165 lines
5.3 KiB
Python
import os
|
|
from datetime import datetime, timedelta
|
|
from operator import itemgetter
|
|
from typing import List, Optional, Tuple
|
|
|
|
from dotenv import find_dotenv, load_dotenv
|
|
from langchain.schema import AIMessage, HumanMessage, format_document
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
from langchain_community.vectorstores.timescalevector import TimescaleVector
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
from langchain_core.prompts.prompt import PromptTemplate
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
from langchain_core.runnables import (
|
|
RunnableBranch,
|
|
RunnableLambda,
|
|
RunnableParallel,
|
|
RunnablePassthrough,
|
|
)
|
|
|
|
from .load_sample_dataset import load_ts_git_dataset
|
|
|
|
load_dotenv(find_dotenv())
|
|
|
|
if os.environ.get("TIMESCALE_SERVICE_URL", None) is None:
|
|
raise Exception("Missing `TIMESCALE_SERVICE_URL` environment variable.")
|
|
|
|
SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]
|
|
LOAD_SAMPLE_DATA = os.environ.get("LOAD_SAMPLE_DATA", False)
|
|
COLLECTION_NAME = os.environ.get("COLLECTION_NAME", "timescale_commits")
|
|
OPENAI_MODEL = os.environ.get("OPENAI_MODEL", "gpt-4")
|
|
|
|
partition_interval = timedelta(days=7)
|
|
if LOAD_SAMPLE_DATA:
|
|
load_ts_git_dataset(
|
|
SERVICE_URL,
|
|
collection_name=COLLECTION_NAME,
|
|
num_records=500,
|
|
partition_interval=partition_interval,
|
|
)
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
vectorstore = TimescaleVector(
|
|
embedding=embeddings,
|
|
collection_name=COLLECTION_NAME,
|
|
service_url=SERVICE_URL,
|
|
time_partition_interval=partition_interval,
|
|
)
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
# Condense a chat history and follow-up question into a standalone question
|
|
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
|
|
Chat History:
|
|
{chat_history}
|
|
Follow Up Input: {question}
|
|
Standalone question:""" # noqa: E501
|
|
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
|
|
|
# RAG answer synthesis prompt
|
|
template = """Answer the question based only on the following context:
|
|
<context>
|
|
{context}
|
|
</context>"""
|
|
ANSWER_PROMPT = ChatPromptTemplate.from_messages(
|
|
[
|
|
("system", template),
|
|
MessagesPlaceholder(variable_name="chat_history"),
|
|
("user", "{question}"),
|
|
]
|
|
)
|
|
|
|
# Conversational Retrieval Chain
|
|
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
|
|
|
|
|
def _combine_documents(
|
|
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
|
|
):
|
|
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
|
return document_separator.join(doc_strings)
|
|
|
|
|
|
def _format_chat_history(chat_history: List[Tuple[str, str]]) -> List:
|
|
buffer = []
|
|
for human, ai in chat_history:
|
|
buffer.append(HumanMessage(content=human))
|
|
buffer.append(AIMessage(content=ai))
|
|
return buffer
|
|
|
|
|
|
# User input
|
|
class ChatHistory(BaseModel):
|
|
chat_history: List[Tuple[str, str]] = Field(..., extra={"widget": {"type": "chat"}})
|
|
question: str
|
|
start_date: Optional[datetime]
|
|
end_date: Optional[datetime]
|
|
metadata_filter: Optional[dict]
|
|
|
|
|
|
_search_query = RunnableBranch(
|
|
# If input includes chat_history, we condense it with the follow-up question
|
|
(
|
|
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
|
|
run_name="HasChatHistoryCheck"
|
|
), # Condense follow-up question and chat into a standalone_question
|
|
RunnablePassthrough.assign(
|
|
retriever_query=RunnablePassthrough.assign(
|
|
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
|
)
|
|
| CONDENSE_QUESTION_PROMPT
|
|
| ChatOpenAI(temperature=0, model=OPENAI_MODEL)
|
|
| StrOutputParser()
|
|
),
|
|
),
|
|
# Else, we have no chat history, so just pass through the question
|
|
RunnablePassthrough.assign(retriever_query=lambda x: x["question"]),
|
|
)
|
|
|
|
|
|
def get_retriever_with_metadata(x):
|
|
start_dt = x.get("start_date", None)
|
|
end_dt = x.get("end_date", None)
|
|
metadata_filter = x.get("metadata_filter", None)
|
|
opt = {}
|
|
|
|
if start_dt is not None:
|
|
opt["start_date"] = start_dt
|
|
if end_dt is not None:
|
|
opt["end_date"] = end_dt
|
|
if metadata_filter is not None:
|
|
opt["filter"] = metadata_filter
|
|
v = vectorstore.as_retriever(search_kwargs=opt)
|
|
return RunnableLambda(itemgetter("retriever_query")) | v
|
|
|
|
|
|
_retriever = RunnableLambda(get_retriever_with_metadata)
|
|
|
|
_inputs = RunnableParallel(
|
|
{
|
|
"question": lambda x: x["question"],
|
|
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
|
|
"start_date": lambda x: x.get("start_date", None),
|
|
"end_date": lambda x: x.get("end_date", None),
|
|
"context": _search_query | _retriever | _combine_documents,
|
|
}
|
|
)
|
|
|
|
_datetime_to_string = RunnablePassthrough.assign(
|
|
start_date=lambda x: x.get("start_date", None).isoformat()
|
|
if x.get("start_date", None) is not None
|
|
else None,
|
|
end_date=lambda x: x.get("end_date", None).isoformat()
|
|
if x.get("end_date", None) is not None
|
|
else None,
|
|
).with_types(input_type=ChatHistory)
|
|
|
|
chain = (
|
|
_datetime_to_string
|
|
| _inputs
|
|
| ANSWER_PROMPT
|
|
| ChatOpenAI(model=OPENAI_MODEL)
|
|
| StrOutputParser()
|
|
)
|