langchain/tests/integration_tests/callbacks/test_wandb_tracer.py
Bharat Ramanathan 22603d19e0
feat(integrations): Add WandbTracer (#4521)
# WandbTracer
This PR adds the `WandbTracer` and deprecates the existing
`WandbCallbackHandler`.

Added an example notebook under the docs section alongside the
`LangchainTracer`
Here's an example
[colab](https://colab.research.google.com/drive/1pY13ym8ENEZ8Fh7nA99ILk2GcdUQu0jR?usp=sharing)
with the same notebook and the
[trace](https://wandb.ai/parambharat/langchain-tracing/runs/8i45cst6)
generated from the colab run


Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-01 00:01:19 -07:00

118 lines
3.3 KiB
Python

"""Integration tests for the langchain tracer module."""
import asyncio
import os
import pytest
from aiohttp import ClientSession
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks.manager import wandb_tracing_enabled
from langchain.llms import OpenAI
questions = [
(
"Who won the US Open men's final in 2019? "
"What is his age raised to the 0.334 power?"
),
(
"Who is Olivia Wilde's boyfriend? "
"What is his current age raised to the 0.23 power?"
),
(
"Who won the most recent formula 1 grand prix? "
"What is their age raised to the 0.23 power?"
),
(
"Who won the US Open women's final in 2019? "
"What is her age raised to the 0.34 power?"
),
("Who is Beyonce's husband? " "What is his age raised to the 0.19 power?"),
]
def test_tracing_sequential() -> None:
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "langchain-tracing"
for q in questions[:3]:
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(q)
def test_tracing_session_env_var() -> None:
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run(questions[0])
@pytest.mark.asyncio
async def test_tracing_concurrent() -> None:
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
aiosession = ClientSession()
llm = OpenAI(temperature=0)
async_tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
aiosession=aiosession,
)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
tasks = [agent.arun(q) for q in questions[:3]]
await asyncio.gather(*tasks)
await aiosession.close()
def test_tracing_context_manager() -> None:
llm = OpenAI(temperature=0)
tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_WANDB_TRACING" in os.environ:
del os.environ["LANGCHAIN_WANDB_TRACING"]
with wandb_tracing_enabled():
agent.run(questions[0]) # this should be traced
agent.run(questions[0]) # this should not be traced
@pytest.mark.asyncio
async def test_tracing_context_manager_async() -> None:
llm = OpenAI(temperature=0)
async_tools = load_tools(
["llm-math", "serpapi"],
llm=llm,
)
agent = initialize_agent(
async_tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
if "LANGCHAIN_WANDB_TRACING" in os.environ:
del os.environ["LANGCHAIN_TRACING"]
# start a background task
task = asyncio.create_task(agent.arun(questions[0])) # this should not be traced
with wandb_tracing_enabled():
tasks = [agent.arun(q) for q in questions[1:4]] # these should be traced
await asyncio.gather(*tasks)
await task