langchain/docs/modules/chains/examples/baby_agi.ipynb
William FH e56673c7f9
BabyAGI Notebook Example (#2559)
Create a notebook implementing
[BabyAGI](https://github.com/yoheinakajima/babyagi/tree/main) by [Yohei
Nakajima](https://twitter.com/yoheinakajima) as LLM Chains.
2023-04-09 13:54:23 -07:00

597 lines
23 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "517a9fd4",
"metadata": {},
"source": [
"# BabyAGI User Guide\n",
"\n",
"This notebook demonstrates how to implement [BabyAGI](https://github.com/yoheinakajima/babyagi/tree/main) by [Yohei Nakajima](https://twitter.com/yoheinakajima). BabyAGI is an AI agent that can generate and pretend to execute tasks based on a given objective.\n",
"\n",
"This guide will help you understand the components to create your own recursive agents.\n"
]
},
{
"cell_type": "markdown",
"id": "556af556",
"metadata": {},
"source": [
"## Install and Import Required Modules"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "33a0c80a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"%pip install pinecone-client > /dev/null"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c8a354b6",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/wfh/code/lc/lckg/.venv/lib/python3.11/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
" from tqdm.autonotebook import tqdm\n"
]
}
],
"source": [
"import os\n",
"from collections import deque\n",
"from typing import Dict, List, Optional\n",
"\n",
"import pinecone\n",
"from langchain import LLMChain, OpenAI, PromptTemplate\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import BaseLLM\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain.vectorstores.base import VectorStore\n",
"from pydantic import BaseModel, Field\n"
]
},
{
"cell_type": "markdown",
"id": "09f70772",
"metadata": {},
"source": [
"## Connect to the Vector Index\n",
"\n",
"Define the required environment, and connect to the vector index.\n",
"\n",
"See [Pinecone](https://app.pinecone.io/) to create your API key."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "794045d4",
"metadata": {},
"outputs": [],
"source": [
"# Define the parameters for this run.\n",
"index_name = \"langchain-baby-agi\"\n",
"OBJECTIVE = \"Interstellar Travel\" # Ultimate goal\n",
"YOUR_FIRST_TASK = \"brush my teeth\" # Where to start"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "802b797e",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI() # The underlying LLM\n",
"\n",
"# Get Pinecone environment\n",
"pinecone.init(\n",
" api_key=os.environ[\"PINECONE_API_KEY\"], # find at app.pinecone.io\n",
" environment=os.environ[\"PINECONE_ENVIRONMENT\"] # next to api key in console\n",
")\n",
"\n",
"# Define your embedding model\n",
"embeddings_model = OpenAIEmbeddings()\n",
"\n",
"# Create Pinecone index if it doesn't exist\n",
"dimension = 1536 # dimension of the embedding space\n",
"metric = \"cosine\" # distance function\n",
"pod_type = \"p1\" # performance-optimized\n",
"if index_name not in pinecone.list_indexes():\n",
" pinecone.create_index(index_name, dimension=dimension, metric=metric, pod_type=pod_type)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "30e8ecc4",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Fetch the index\n",
"text_key = \"page_content\"\n",
"if index_name in pinecone.list_indexes():\n",
" index = pinecone.Index(index_name)\n",
"else:\n",
" raise ValueError(f\"Index '{index_name}' not found in your Pinecone project.\")\n",
"\n",
"vectorstore = Pinecone(index, embeddings_model.embed_query, text_key)"
]
},
{
"cell_type": "markdown",
"id": "0f3b72bf",
"metadata": {},
"source": [
"## Define the Chains\n",
"\n",
"BabyAGI relies on three LLM chains:\n",
"- Task creation chain to select new tasks to add to the list\n",
"- Task prioritization chain to re-prioritize tasks\n",
"- Execution Chain to execute the tasks"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "bf4bd5cd",
"metadata": {},
"outputs": [],
"source": [
"class TaskCreationChain(LLMChain):\n",
" \"\"\"Chain to generates tasks.\"\"\"\n",
"\n",
" @classmethod\n",
" def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:\n",
" \"\"\"Get the response parser.\"\"\"\n",
" task_creation_template = (\n",
" \"You are an task creation AI that uses the result of an execution agent\"\n",
" \" to create new tasks with the following objective: {objective},\"\n",
" \" The last completed task has the result: {result}.\"\n",
" \" This result was based on this task description: {task_description}.\"\n",
" \" These are incomplete tasks: {incomplete_tasks}.\"\n",
" \" Based on the result, create new tasks to be completed\"\n",
" \" by the AI system that do not overlap with incomplete tasks.\"\n",
" \" Return the tasks as an array.\"\n",
" )\n",
" prompt = PromptTemplate(\n",
" template=task_creation_template,\n",
" partial_variables={\"objective\": objective},\n",
" input_variables=[\"result\", \"task_description\", \"incomplete_tasks\"],\n",
" )\n",
" return cls(prompt=prompt, llm=llm, verbose=verbose)\n",
" \n",
" def get_next_task(self, result: Dict, task_description: str, task_list: List[str]) -> List[Dict]:\n",
" \"\"\"Get the next task.\"\"\"\n",
" incomplete_tasks = \", \".join(task_list)\n",
" response = self.run(result=result, task_description=task_description, incomplete_tasks=incomplete_tasks)\n",
" new_tasks = response.split('\\n')\n",
" return [{\"task_name\": task_name} for task_name in new_tasks if task_name.strip()]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "b6488ffe",
"metadata": {},
"outputs": [],
"source": [
"class TaskPrioritizationChain(LLMChain):\n",
" \"\"\"Chain to prioritize tasks.\"\"\"\n",
"\n",
" @classmethod\n",
" def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:\n",
" \"\"\"Get the response parser.\"\"\"\n",
" task_prioritization_template = (\n",
" \"You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing\"\n",
" \" the following tasks: {task_names}.\"\n",
" \" Consider the ultimate objective of your team: {objective}.\"\n",
" \" Do not remove any tasks. Return the result as a numbered list, like:\"\n",
" \" #. First task\"\n",
" \" #. Second task\"\n",
" \" Start the task list with number {next_task_id}.\"\n",
" )\n",
" prompt = PromptTemplate(\n",
" template=task_prioritization_template,\n",
" partial_variables={\"objective\": objective},\n",
" input_variables=[\"task_names\", \"next_task_id\"],\n",
" )\n",
" return cls(prompt=prompt, llm=llm, verbose=verbose)\n",
"\n",
" def prioritize_tasks(self, this_task_id: int, task_list: List[Dict]) -> List[Dict]:\n",
" \"\"\"Prioritize tasks.\"\"\"\n",
" task_names = [t[\"task_name\"] for t in task_list]\n",
" next_task_id = int(this_task_id) + 1\n",
" response = self.run(task_names=task_names, next_task_id=next_task_id)\n",
" new_tasks = response.split('\\n')\n",
" prioritized_task_list = []\n",
" for task_string in new_tasks:\n",
" if not task_string.strip():\n",
" continue\n",
" task_parts = task_string.strip().split(\".\", 1)\n",
" if len(task_parts) == 2:\n",
" task_id = task_parts[0].strip()\n",
" task_name = task_parts[1].strip()\n",
" prioritized_task_list.append({\"task_id\": task_id, \"task_name\": task_name})\n",
" return prioritized_task_list\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b43cd580",
"metadata": {},
"outputs": [],
"source": [
"class ExecutionChain(LLMChain):\n",
" \"\"\"Chain to execute tasks.\"\"\"\n",
" \n",
" vectorstore: VectorStore = Field(init=False)\n",
"\n",
" @classmethod\n",
" def from_llm(cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = True) -> LLMChain:\n",
" \"\"\"Get the response parser.\"\"\"\n",
" execution_template = (\n",
" \"You are an AI who performs one task based on the following objective: {objective}.\"\n",
" \" Take into account these previously completed tasks: {context}.\"\n",
" \" Your task: {task}.\"\n",
" \" Response:\"\n",
" )\n",
" prompt = PromptTemplate(\n",
" template=execution_template,\n",
" input_variables=[\"objective\", \"context\", \"task\"],\n",
" )\n",
" return cls(prompt=prompt, llm=llm, verbose=verbose, vectorstore=vectorstore)\n",
" \n",
" def _get_top_tasks(self, query: str, k: int) -> List[str]:\n",
" \"\"\"Get the top k tasks based on the query.\"\"\"\n",
" results = self.vectorstore.similarity_search_with_score(query, k=k)\n",
" if not results:\n",
" return []\n",
" sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))\n",
" return [str(item.metadata['task']) for item in sorted_results]\n",
" \n",
" def execute_task(self, objective: str, task: str, k: int = 5) -> str:\n",
" \"\"\"Execute a task.\"\"\"\n",
" context = self._get_top_tasks(query=objective, k=k)\n",
" return self.run(objective=objective, context=context, task=task)\n"
]
},
{
"cell_type": "markdown",
"id": "3ad996c5",
"metadata": {},
"source": [
"### Define the BabyAGI Controller\n",
"\n",
"BabyAGI composes the chains defined above in a (potentially-)infinite loop."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1e978938",
"metadata": {},
"outputs": [],
"source": [
"class BabyAGI(BaseModel):\n",
" \"\"\"Controller model for the BabyAGI agent.\"\"\"\n",
"\n",
" objective: str = Field(alias=\"objective\")\n",
" task_list: deque = Field(default_factory=deque)\n",
" task_creation_chain: TaskCreationChain = Field(...)\n",
" task_prioritization_chain: TaskPrioritizationChain = Field(...)\n",
" execution_chain: ExecutionChain = Field(...)\n",
" task_id_counter: int = Field(1)\n",
"\n",
" def add_task(self, task: Dict):\n",
" self.task_list.append(task)\n",
"\n",
" def print_task_list(self):\n",
" print(\"\\033[95m\\033[1m\" + \"\\n*****TASK LIST*****\\n\" + \"\\033[0m\\033[0m\")\n",
" for t in self.task_list:\n",
" print(str(t[\"task_id\"]) + \": \" + t[\"task_name\"])\n",
"\n",
" def print_next_task(self, task: Dict):\n",
" print(\"\\033[92m\\033[1m\" + \"\\n*****NEXT TASK*****\\n\" + \"\\033[0m\\033[0m\")\n",
" print(str(task[\"task_id\"]) + \": \" + task[\"task_name\"])\n",
"\n",
" def print_task_result(self, result: str):\n",
" print(\"\\033[93m\\033[1m\" + \"\\n*****TASK RESULT*****\\n\" + \"\\033[0m\\033[0m\")\n",
" print(result)\n",
"\n",
" def run(self, max_iterations: Optional[int] = None):\n",
" \"\"\"Run the agent.\"\"\"\n",
" num_iters = 0\n",
" while True:\n",
" if self.task_list:\n",
" self.print_task_list()\n",
"\n",
" # Step 1: Pull the first task\n",
" task = self.task_list.popleft()\n",
" self.print_next_task(task)\n",
"\n",
" # Step 2: Execute the task\n",
" result = self.execution_chain.execute_task(\n",
" self.objective, task[\"task_name\"]\n",
" )\n",
" this_task_id = int(task[\"task_id\"])\n",
" self.print_task_result(result)\n",
"\n",
" # Step 3: Store the result in Pinecone\n",
" result_id = f\"result_{task['task_id']}\"\n",
" self.execution_chain.vectorstore.add_texts(\n",
" texts=[result],\n",
" metadatas=[{\"task\": task[\"task_name\"]}],\n",
" ids=[result_id],\n",
" )\n",
"\n",
" # Step 4: Create new tasks and reprioritize task list\n",
" new_tasks = self.task_creation_chain.get_next_task(\n",
" result, task[\"task_name\"], [t[\"task_name\"] for t in self.task_list]\n",
" )\n",
" for new_task in new_tasks:\n",
" self.task_id_counter += 1\n",
" new_task.update({\"task_id\": self.task_id_counter})\n",
" self.add_task(new_task)\n",
" self.task_list = deque(\n",
" self.task_prioritization_chain.prioritize_tasks(\n",
" this_task_id, list(self.task_list)\n",
" )\n",
" )\n",
" num_iters += 1\n",
" if max_iterations is not None and num_iters == max_iterations:\n",
" print(\"\\033[91m\\033[1m\" + \"\\n*****TASK ENDING*****\\n\" + \"\\033[0m\\033[0m\")\n",
" break\n",
"\n",
" @classmethod\n",
" def from_llm_and_objectives(\n",
" cls,\n",
" llm: BaseLLM,\n",
" vectorstore: VectorStore,\n",
" objective: str,\n",
" first_task: str,\n",
" verbose: bool = False,\n",
" ) -> \"BabyAGI\":\n",
" \"\"\"Initialize the BabyAGI Controller.\"\"\"\n",
" task_creation_chain = TaskCreationChain.from_llm(\n",
" llm, objective, verbose=verbose\n",
" )\n",
" task_prioritization_chain = TaskPrioritizationChain.from_llm(\n",
" llm, objective, verbose=verbose\n",
" )\n",
" execution_chain = ExecutionChain.from_llm(llm, vectorstore, verbose=verbose)\n",
" controller = cls(\n",
" objective=objective,\n",
" task_creation_chain=task_creation_chain,\n",
" task_prioritization_chain=task_prioritization_chain,\n",
" execution_chain=execution_chain,\n",
" )\n",
" controller.add_task({\"task_id\": 1, \"task_name\": first_task})\n",
" return controller"
]
},
{
"cell_type": "markdown",
"id": "05ba762e",
"metadata": {},
"source": [
"### Run the BabyAGI\n",
"\n",
"Now it's time to create the BabyAGI controller and watch it try to accomplish your objective."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "3d69899b",
"metadata": {},
"outputs": [],
"source": [
"# Run the agent\n",
"verbose=False\n",
"\n",
"baby_agi = BabyAGI.from_llm_and_objectives(\n",
" llm=llm,\n",
" vectorstore=vectorstore,\n",
" objective=OBJECTIVE,\n",
" first_task=YOUR_FIRST_TASK,\n",
" verbose=verbose\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f7957b51",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"1: brush my teeth\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"1: brush my teeth\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
" The objective of this task does not align with the objective of Interstellar Travel. Please provide a task that is related to Interstellar Travel.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68b489b48aad4ce886088bd8be140bfa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upserted vectors: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"2: Investigate the cost of building a spacecraft capable of interstellar travel\n",
"3: Design a navigation system to safely guide a spacecraft to its destination\n",
"4: Analyze the potential risks of interstellar travel\n",
"5: Create a model to predict the effects of radiation on a spacecraft during interstellar travel\n",
"6: Develop a strategy for managing resources during an interstellar voyage\n",
"1: Research existing propulsion technologies for interstellar travel\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"2: Investigate the cost of building a spacecraft capable of interstellar travel\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"I will investigate the cost of building a spacecraft capable of interstellar travel. This task will involve researching the cost of materials, labor, and other resources necessary to build a spacecraft, as well as any additional costs associated with the design, testing, and implementation of the spacecraft. I will also seek to determine the best methods and practices for building a spacecraft capable of interstellar travel, in order to minimize costs while maximizing efficiency. Additionally, I will research the potential cost savings associated with using existing resources, such as existing technology, or utilizing new technologies or materials.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "038d85739c2a46bcb05c58fd30e8c12e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upserted vectors: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[95m\u001b[1m\n",
"*****TASK LIST*****\n",
"\u001b[0m\u001b[0m\n",
"3: Design a navigation system to safely guide a spacecraft to its destination\n",
"4: Create a model to predict the effects of radiation on a spacecraft during interstellar travel\n",
"5: Develop a strategy for managing resources during an interstellar voyage\n",
"6: Research existing propulsion technologies for interstellar travel\n",
"7: Investigate the impact of fuel efficiency on the cost of interstellar travel\n",
"8: Identify potential sources of renewable energy that could power a spacecraft during interstellar travel\n",
"9: Research existing methods of shielding a spacecraft from radiation during interstellar travel\n",
"10: Examine the potential impacts of interstellar travel on the environment\n",
"11: Investigate the feasibility of using artificial intelligence to aid in the navigation of a spacecraft\n",
"12: Analyze the potential risks of interstellar travel\n",
"13: Develop a strategy to ensure the safety of a spacecraft and its crew during interstellar travel\n",
"\u001b[92m\u001b[1m\n",
"*****NEXT TASK*****\n",
"\u001b[0m\u001b[0m\n",
"3: Design a navigation system to safely guide a spacecraft to its destination\n",
"\u001b[93m\u001b[1m\n",
"*****TASK RESULT*****\n",
"\u001b[0m\u001b[0m\n",
"\n",
"\n",
"My task is to design a navigation system to safely guide a spacecraft to its destination. To do this, I will need to take into account the previously completed tasks, such as the optimization of the efficiency and cost of interstellar travel, the protection of travelers against extreme gravitational forces, the survival of travelers in extreme environments, the evaluation of the potential environmental impact of interstellar travel, and the storage and management of resources necessary for long interstellar journeys.\n",
"\n",
"To begin, I will need to create a system that can accurately map and navigate the vast distances of interstellar space. This will involve developing algorithms for astronomical navigation, astrometry, and celestial navigation. Additionally, I will need to incorporate methods for tracking and predicting changes in the environment, such as gravitational forces, radiation, and other conditions. \n",
"\n",
"The navigation system must also be able to respond to unexpected variables and provide real-time adjustments to the spacecraft's course. For this, I will need to incorporate advanced artificial intelligence and machine learning techniques to enable the system to self-adjust and adapt to new data. \n",
"\n",
"Finally, the navigation system must be able to accurately guide the spacecraft to its destination in the most efficient manner possible. To this end, I will need to develop algorithms that take into account the\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5018895472040de8719111da10e1ee2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Upserted vectors: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[91m\u001b[1m\n",
"*****TASK ENDING*****\n",
"\u001b[0m\u001b[0m\n"
]
}
],
"source": [
"max_iterations: Optional[int] = 3 # If None, agent will run until interrupted\n",
"baby_agi.run(max_iterations=max_iterations)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5166a452",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}