mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
137 lines
2.9 KiB
Plaintext
137 lines
2.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "052dfe58",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Fake LLM\n",
|
|
"LangChain provides a fake LLM class that can be used for testing. This allows you to mock out calls to the LLM and simulate what would happen if the LLM responded in a certain way.\n",
|
|
"\n",
|
|
"In this notebook we go over how to use this.\n",
|
|
"\n",
|
|
"We start this with using the FakeLLM in an agent."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "ef97ac4d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.llms.fake import FakeListLLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "9a0a160f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.agents import AgentType, initialize_agent, load_tools"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "b272258c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tools = load_tools([\"python_repl\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"id": "94096c4c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"responses = [\"Action: Python REPL\\nAction Input: print(2 + 2)\", \"Final Answer: 4\"]\n",
|
|
"llm = FakeListLLM(responses=responses)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"id": "da226d02",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"agent = initialize_agent(\n",
|
|
" tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"id": "44c13426",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
"\u001b[32;1m\u001b[1;3mAction: Python REPL\n",
|
|
"Action Input: print(2 + 2)\u001b[0m\n",
|
|
"Observation: \u001b[36;1m\u001b[1;3m4\n",
|
|
"\u001b[0m\n",
|
|
"Thought:\u001b[32;1m\u001b[1;3mFinal Answer: 4\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'4'"
|
|
]
|
|
},
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"agent.run(\"whats 2 + 2\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "814c2858",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|