mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
58 lines
1.8 KiB
Python
58 lines
1.8 KiB
Python
"""Test huggingface embeddings."""
|
|
|
|
from langchain_community.embeddings.huggingface import (
|
|
HuggingFaceEmbeddings,
|
|
HuggingFaceInstructEmbeddings,
|
|
)
|
|
|
|
|
|
def test_huggingface_embedding_documents() -> None:
|
|
"""Test huggingface embeddings."""
|
|
documents = ["foo bar"]
|
|
embedding = HuggingFaceEmbeddings()
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
def test_huggingface_embedding_query() -> None:
|
|
"""Test huggingface embeddings."""
|
|
document = "foo bar"
|
|
embedding = HuggingFaceEmbeddings(encode_kwargs={"batch_size": 16})
|
|
output = embedding.embed_query(document)
|
|
assert len(output) == 768
|
|
|
|
|
|
def test_huggingface_instructor_embedding_documents() -> None:
|
|
"""Test huggingface embeddings."""
|
|
documents = ["foo bar"]
|
|
model_name = "hkunlp/instructor-base"
|
|
embedding = HuggingFaceInstructEmbeddings(model_name=model_name)
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
def test_huggingface_instructor_embedding_query() -> None:
|
|
"""Test huggingface embeddings."""
|
|
query = "foo bar"
|
|
model_name = "hkunlp/instructor-base"
|
|
embedding = HuggingFaceInstructEmbeddings(model_name=model_name)
|
|
output = embedding.embed_query(query)
|
|
assert len(output) == 768
|
|
|
|
|
|
def test_huggingface_instructor_embedding_normalize() -> None:
|
|
"""Test huggingface embeddings."""
|
|
query = "foo bar"
|
|
model_name = "hkunlp/instructor-base"
|
|
encode_kwargs = {"normalize_embeddings": True}
|
|
embedding = HuggingFaceInstructEmbeddings(
|
|
model_name=model_name, encode_kwargs=encode_kwargs
|
|
)
|
|
output = embedding.embed_query(query)
|
|
assert len(output) == 768
|
|
eps = 1e-5
|
|
norm = sum([o**2 for o in output])
|
|
assert abs(1 - norm) <= eps
|