mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
5f839beab9
This is technically a breaking change because it'll switch out default models from `text-davinci-003` to `gpt-3.5-turbo-instruct`, but OpenAI is shutting off those endpoints on 1/4 anyways. Feels less disruptive to switch out the default instead.
333 lines
11 KiB
Python
333 lines
11 KiB
Python
"""Test ChatOpenAI wrapper."""
|
|
from typing import Any, Optional
|
|
|
|
import pytest
|
|
from langchain_core.callbacks import CallbackManager
|
|
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage
|
|
from langchain_core.outputs import (
|
|
ChatGeneration,
|
|
ChatResult,
|
|
LLMResult,
|
|
)
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
|
|
from langchain_community.chat_models.openai import ChatOpenAI
|
|
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_openai() -> None:
|
|
"""Test ChatOpenAI wrapper."""
|
|
chat = ChatOpenAI(
|
|
temperature=0.7,
|
|
base_url=None,
|
|
organization=None,
|
|
openai_proxy=None,
|
|
timeout=10.0,
|
|
max_retries=3,
|
|
http_client=None,
|
|
n=1,
|
|
max_tokens=10,
|
|
default_headers=None,
|
|
default_query=None,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
def test_chat_openai_model() -> None:
|
|
"""Test ChatOpenAI wrapper handles model_name."""
|
|
chat = ChatOpenAI(model="foo")
|
|
assert chat.model_name == "foo"
|
|
chat = ChatOpenAI(model_name="bar")
|
|
assert chat.model_name == "bar"
|
|
|
|
|
|
def test_chat_openai_system_message() -> None:
|
|
"""Test ChatOpenAI wrapper with system message."""
|
|
chat = ChatOpenAI(max_tokens=10)
|
|
system_message = SystemMessage(content="You are to chat with the user.")
|
|
human_message = HumanMessage(content="Hello")
|
|
response = chat([system_message, human_message])
|
|
assert isinstance(response, BaseMessage)
|
|
assert isinstance(response.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_openai_generate() -> None:
|
|
"""Test ChatOpenAI wrapper with generate."""
|
|
chat = ChatOpenAI(max_tokens=10, n=2)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat.generate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output
|
|
for generations in response.generations:
|
|
assert len(generations) == 2
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_openai_multiple_completions() -> None:
|
|
"""Test ChatOpenAI wrapper with multiple completions."""
|
|
chat = ChatOpenAI(max_tokens=10, n=5)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat._generate([message])
|
|
assert isinstance(response, ChatResult)
|
|
assert len(response.generations) == 5
|
|
for generation in response.generations:
|
|
assert isinstance(generation.message, BaseMessage)
|
|
assert isinstance(generation.message.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_openai_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatOpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = chat([message])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, BaseMessage)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_chat_openai_streaming_generation_info() -> None:
|
|
"""Test that generation info is preserved when streaming."""
|
|
|
|
class _FakeCallback(FakeCallbackHandler):
|
|
saved_things: dict = {}
|
|
|
|
def on_llm_end(
|
|
self,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
# Save the generation
|
|
self.saved_things["generation"] = args[0]
|
|
|
|
callback = _FakeCallback()
|
|
callback_manager = CallbackManager([callback])
|
|
chat = ChatOpenAI(
|
|
max_tokens=2,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
)
|
|
list(chat.stream("hi"))
|
|
generation = callback.saved_things["generation"]
|
|
# `Hello!` is two tokens, assert that that is what is returned
|
|
assert generation.generations[0][0].text == "Hello!"
|
|
|
|
|
|
def test_chat_openai_llm_output_contains_model_name() -> None:
|
|
"""Test llm_output contains model_name."""
|
|
chat = ChatOpenAI(max_tokens=10)
|
|
message = HumanMessage(content="Hello")
|
|
llm_result = chat.generate([[message]])
|
|
assert llm_result.llm_output is not None
|
|
assert llm_result.llm_output["model_name"] == chat.model_name
|
|
|
|
|
|
def test_chat_openai_streaming_llm_output_contains_model_name() -> None:
|
|
"""Test llm_output contains model_name."""
|
|
chat = ChatOpenAI(max_tokens=10, streaming=True)
|
|
message = HumanMessage(content="Hello")
|
|
llm_result = chat.generate([[message]])
|
|
assert llm_result.llm_output is not None
|
|
assert llm_result.llm_output["model_name"] == chat.model_name
|
|
|
|
|
|
def test_chat_openai_invalid_streaming_params() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
with pytest.raises(ValueError):
|
|
ChatOpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
n=5,
|
|
)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_async_chat_openai() -> None:
|
|
"""Test async generation."""
|
|
chat = ChatOpenAI(max_tokens=10, n=2)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
assert response.llm_output
|
|
for generations in response.generations:
|
|
assert len(generations) == 2
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_async_chat_openai_streaming() -> None:
|
|
"""Test that streaming correctly invokes on_llm_new_token callback."""
|
|
callback_handler = FakeCallbackHandler()
|
|
callback_manager = CallbackManager([callback_handler])
|
|
chat = ChatOpenAI(
|
|
max_tokens=10,
|
|
streaming=True,
|
|
temperature=0,
|
|
callback_manager=callback_manager,
|
|
verbose=True,
|
|
)
|
|
message = HumanMessage(content="Hello")
|
|
response = await chat.agenerate([[message], [message]])
|
|
assert callback_handler.llm_streams > 0
|
|
assert isinstance(response, LLMResult)
|
|
assert len(response.generations) == 2
|
|
for generations in response.generations:
|
|
assert len(generations) == 1
|
|
for generation in generations:
|
|
assert isinstance(generation, ChatGeneration)
|
|
assert isinstance(generation.text, str)
|
|
assert generation.text == generation.message.content
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_async_chat_openai_bind_functions() -> None:
|
|
"""Test ChatOpenAI wrapper with multiple completions."""
|
|
|
|
class Person(BaseModel):
|
|
"""Identifying information about a person."""
|
|
|
|
name: str = Field(..., title="Name", description="The person's name")
|
|
age: int = Field(..., title="Age", description="The person's age")
|
|
fav_food: Optional[str] = Field(
|
|
default=None, title="Fav Food", description="The person's favorite food"
|
|
)
|
|
|
|
chat = ChatOpenAI(
|
|
max_tokens=30,
|
|
n=1,
|
|
streaming=True,
|
|
).bind_functions(functions=[Person], function_call="Person")
|
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
("system", "Use the provided Person function"),
|
|
("user", "{input}"),
|
|
]
|
|
)
|
|
|
|
chain = prompt | chat
|
|
|
|
message = HumanMessage(content="Sally is 13 years old")
|
|
response = await chain.abatch([{"input": message}])
|
|
|
|
assert isinstance(response, list)
|
|
assert len(response) == 1
|
|
for generation in response:
|
|
assert isinstance(generation, AIMessage)
|
|
|
|
|
|
def test_chat_openai_extra_kwargs() -> None:
|
|
"""Test extra kwargs to chat openai."""
|
|
# Check that foo is saved in extra_kwargs.
|
|
llm = ChatOpenAI(foo=3, max_tokens=10)
|
|
assert llm.max_tokens == 10
|
|
assert llm.model_kwargs == {"foo": 3}
|
|
|
|
# Test that if extra_kwargs are provided, they are added to it.
|
|
llm = ChatOpenAI(foo=3, model_kwargs={"bar": 2})
|
|
assert llm.model_kwargs == {"foo": 3, "bar": 2}
|
|
|
|
# Test that if provided twice it errors
|
|
with pytest.raises(ValueError):
|
|
ChatOpenAI(foo=3, model_kwargs={"foo": 2})
|
|
|
|
# Test that if explicit param is specified in kwargs it errors
|
|
with pytest.raises(ValueError):
|
|
ChatOpenAI(model_kwargs={"temperature": 0.2})
|
|
|
|
# Test that "model" cannot be specified in kwargs
|
|
with pytest.raises(ValueError):
|
|
ChatOpenAI(model_kwargs={"model": "gpt-3.5-turbo-instruct"})
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_streaming() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = ChatOpenAI(max_tokens=10)
|
|
|
|
for token in llm.stream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_astream() -> None:
|
|
"""Test streaming tokens from OpenAI."""
|
|
llm = ChatOpenAI(max_tokens=10)
|
|
|
|
async for token in llm.astream("I'm Pickle Rick"):
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_abatch() -> None:
|
|
"""Test streaming tokens from ChatOpenAI."""
|
|
llm = ChatOpenAI(max_tokens=10)
|
|
|
|
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_abatch_tags() -> None:
|
|
"""Test batch tokens from ChatOpenAI."""
|
|
llm = ChatOpenAI(max_tokens=10)
|
|
|
|
result = await llm.abatch(
|
|
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
|
)
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_batch() -> None:
|
|
"""Test batch tokens from ChatOpenAI."""
|
|
llm = ChatOpenAI(max_tokens=10)
|
|
|
|
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
|
for token in result:
|
|
assert isinstance(token.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
async def test_openai_ainvoke() -> None:
|
|
"""Test invoke tokens from ChatOpenAI."""
|
|
llm = ChatOpenAI(max_tokens=10)
|
|
|
|
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
|
assert isinstance(result.content, str)
|
|
|
|
|
|
@pytest.mark.scheduled
|
|
def test_openai_invoke() -> None:
|
|
"""Test invoke tokens from ChatOpenAI."""
|
|
llm = ChatOpenAI(max_tokens=10)
|
|
|
|
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
|
assert isinstance(result.content, str)
|