mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
b3f4de38ae
![Screenshot 2024-02-26 at 2 07 06 PM](https://github.com/langchain-ai/langchain/assets/22008038/20cacb47-3b24-45b5-871b-dd169f1acd37)
585 lines
23 KiB
Python
585 lines
23 KiB
Python
from __future__ import annotations
|
|
|
|
import importlib.util
|
|
import logging
|
|
from operator import itemgetter
|
|
from typing import (
|
|
Any,
|
|
AsyncIterator,
|
|
Callable,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Optional,
|
|
Sequence,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
cast,
|
|
)
|
|
|
|
from langchain_core._api import beta
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import LanguageModelInput
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.language_models.llms import create_base_retry_decorator
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolMessage,
|
|
)
|
|
from langchain_core.output_parsers.base import OutputParserLike
|
|
from langchain_core.output_parsers.openai_tools import (
|
|
JsonOutputKeyToolsParser,
|
|
PydanticToolsParser,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
|
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
|
from langchain_core.tools import BaseTool
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
from mistralai.async_client import MistralAsyncClient
|
|
from mistralai.client import MistralClient
|
|
from mistralai.constants import ENDPOINT as DEFAULT_MISTRAL_ENDPOINT
|
|
from mistralai.exceptions import (
|
|
MistralAPIException,
|
|
MistralConnectionException,
|
|
MistralException,
|
|
)
|
|
from mistralai.models.chat_completion import (
|
|
ChatCompletionResponse as MistralChatCompletionResponse,
|
|
)
|
|
from mistralai.models.chat_completion import ChatMessage as MistralChatMessage
|
|
from mistralai.models.chat_completion import DeltaMessage as MistralDeltaMessage
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _create_retry_decorator(
|
|
llm: ChatMistralAI,
|
|
run_manager: Optional[
|
|
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
|
|
] = None,
|
|
) -> Callable[[Any], Any]:
|
|
"""Returns a tenacity retry decorator, preconfigured to handle exceptions"""
|
|
|
|
errors = [
|
|
MistralException,
|
|
MistralAPIException,
|
|
MistralConnectionException,
|
|
]
|
|
return create_base_retry_decorator(
|
|
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
|
|
)
|
|
|
|
|
|
def _convert_mistral_chat_message_to_message(
|
|
_message: MistralChatMessage,
|
|
) -> BaseMessage:
|
|
role = _message.role
|
|
content = cast(Union[str, List], _message.content)
|
|
if role == "user":
|
|
return HumanMessage(content=content)
|
|
elif role == "assistant":
|
|
additional_kwargs: Dict = {}
|
|
if hasattr(_message, "tool_calls") and getattr(_message, "tool_calls"):
|
|
additional_kwargs["tool_calls"] = [
|
|
tc.model_dump() for tc in getattr(_message, "tool_calls")
|
|
]
|
|
return AIMessage(content=content, additional_kwargs=additional_kwargs)
|
|
elif role == "system":
|
|
return SystemMessage(content=content)
|
|
elif role == "tool":
|
|
return ToolMessage(content=content, name=_message.name) # type: ignore[attr-defined]
|
|
else:
|
|
return ChatMessage(content=content, role=role)
|
|
|
|
|
|
async def acompletion_with_retry(
|
|
llm: ChatMistralAI,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Use tenacity to retry the async completion call."""
|
|
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
|
|
|
@retry_decorator
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
stream = kwargs.pop("stream", False)
|
|
if stream:
|
|
return llm.async_client.chat_stream(**kwargs)
|
|
else:
|
|
return await llm.async_client.chat(**kwargs)
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_delta: MistralDeltaMessage, default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = getattr(_delta, "role")
|
|
content = getattr(_delta, "content", "")
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
additional_kwargs: Dict = {}
|
|
if hasattr(_delta, "tool_calls") and getattr(_delta, "tool_calls"):
|
|
additional_kwargs["tool_calls"] = [
|
|
tc.model_dump() for tc in getattr(_delta, "tool_calls")
|
|
]
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role)
|
|
else:
|
|
return default_class(content=content)
|
|
|
|
|
|
def _convert_message_to_mistral_chat_message(
|
|
message: BaseMessage,
|
|
) -> MistralChatMessage:
|
|
if isinstance(message, ChatMessage):
|
|
mistral_message = MistralChatMessage(role=message.role, content=message.content)
|
|
elif isinstance(message, HumanMessage):
|
|
mistral_message = MistralChatMessage(role="user", content=message.content)
|
|
elif isinstance(message, AIMessage):
|
|
if "tool_calls" in message.additional_kwargs:
|
|
from mistralai.models.chat_completion import ( # type: ignore[attr-defined]
|
|
ToolCall as MistralToolCall,
|
|
)
|
|
|
|
tool_calls = [
|
|
MistralToolCall.model_validate(tc)
|
|
for tc in message.additional_kwargs["tool_calls"]
|
|
]
|
|
else:
|
|
tool_calls = None
|
|
mistral_message = MistralChatMessage(
|
|
role="assistant", content=message.content, tool_calls=tool_calls
|
|
)
|
|
elif isinstance(message, SystemMessage):
|
|
mistral_message = MistralChatMessage(role="system", content=message.content)
|
|
elif isinstance(message, ToolMessage):
|
|
mistral_message = MistralChatMessage(
|
|
role="tool", content=message.content, name=message.name
|
|
)
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
return mistral_message
|
|
|
|
|
|
class ChatMistralAI(BaseChatModel):
|
|
"""A chat model that uses the MistralAI API."""
|
|
|
|
client: MistralClient = Field(default=None) #: :meta private:
|
|
async_client: MistralAsyncClient = Field(default=None) #: :meta private:
|
|
mistral_api_key: Optional[SecretStr] = None
|
|
endpoint: str = DEFAULT_MISTRAL_ENDPOINT
|
|
max_retries: int = 5
|
|
timeout: int = 120
|
|
max_concurrent_requests: int = 64
|
|
|
|
model: str = "mistral-small"
|
|
temperature: float = 0.7
|
|
max_tokens: Optional[int] = None
|
|
top_p: float = 1
|
|
"""Decode using nucleus sampling: consider the smallest set of tokens whose
|
|
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
|
|
random_seed: Optional[int] = None
|
|
safe_mode: bool = False
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling the API."""
|
|
defaults = {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
"top_p": self.top_p,
|
|
"random_seed": self.random_seed,
|
|
"safe_mode": self.safe_mode,
|
|
}
|
|
filtered = {k: v for k, v in defaults.items() if v is not None}
|
|
return filtered
|
|
|
|
@property
|
|
def _client_params(self) -> Dict[str, Any]:
|
|
"""Get the parameters used for the client."""
|
|
return self._default_params
|
|
|
|
def completion_with_retry(
|
|
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
|
) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
|
|
|
@retry_decorator
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
stream = kwargs.pop("stream", False)
|
|
if stream:
|
|
return self.client.chat_stream(**kwargs)
|
|
else:
|
|
return self.client.chat(**kwargs)
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate api key, python package exists, temperature, and top_p."""
|
|
mistralai_spec = importlib.util.find_spec("mistralai")
|
|
if mistralai_spec is None:
|
|
raise MistralException(
|
|
"Could not find mistralai python package. "
|
|
"Please install it with `pip install mistralai`"
|
|
)
|
|
|
|
values["mistral_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(
|
|
values, "mistral_api_key", "MISTRAL_API_KEY", default=""
|
|
)
|
|
)
|
|
values["client"] = MistralClient(
|
|
api_key=values["mistral_api_key"].get_secret_value(),
|
|
endpoint=values["endpoint"],
|
|
max_retries=values["max_retries"],
|
|
timeout=values["timeout"],
|
|
)
|
|
values["async_client"] = MistralAsyncClient(
|
|
api_key=values["mistral_api_key"].get_secret_value(),
|
|
endpoint=values["endpoint"],
|
|
max_retries=values["max_retries"],
|
|
timeout=values["timeout"],
|
|
max_concurrent_requests=values["max_concurrent_requests"],
|
|
)
|
|
|
|
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
|
|
raise ValueError("temperature must be in the range [0.0, 1.0]")
|
|
|
|
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
|
|
raise ValueError("top_p must be in the range [0.0, 1.0]")
|
|
|
|
return values
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else False
|
|
if should_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = self.completion_with_retry(
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
)
|
|
return self._create_chat_result(response)
|
|
|
|
def _create_chat_result(
|
|
self, response: MistralChatCompletionResponse
|
|
) -> ChatResult:
|
|
generations = []
|
|
for res in response.choices:
|
|
finish_reason = getattr(res, "finish_reason")
|
|
if finish_reason:
|
|
finish_reason = finish_reason.value
|
|
gen = ChatGeneration(
|
|
message=_convert_mistral_chat_message_to_message(res.message),
|
|
generation_info={"finish_reason": finish_reason},
|
|
)
|
|
generations.append(gen)
|
|
token_usage = getattr(response, "usage")
|
|
token_usage = vars(token_usage) if token_usage else {}
|
|
llm_output = {"token_usage": token_usage, "model": self.model}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
) -> Tuple[List[MistralChatMessage], Dict[str, Any]]:
|
|
params = self._client_params
|
|
if stop is not None or "stop" in params:
|
|
if "stop" in params:
|
|
params.pop("stop")
|
|
logger.warning(
|
|
"Parameter `stop` not yet supported (https://docs.mistral.ai/api)"
|
|
)
|
|
message_dicts = [_convert_message_to_mistral_chat_message(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
for chunk in self.completion_with_retry(
|
|
messages=message_dicts, run_manager=run_manager, **params
|
|
):
|
|
if len(chunk.choices) == 0:
|
|
continue
|
|
delta = chunk.choices[0].delta
|
|
if not delta.content:
|
|
continue
|
|
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
default_chunk_class = chunk.__class__
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(token=chunk.content, chunk=chunk)
|
|
yield ChatGenerationChunk(message=chunk)
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
async for chunk in await acompletion_with_retry(
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
):
|
|
if len(chunk.choices) == 0:
|
|
continue
|
|
delta = chunk.choices[0].delta
|
|
if not delta.content:
|
|
continue
|
|
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
default_chunk_class = chunk.__class__
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(token=chunk.content, chunk=chunk)
|
|
yield ChatGenerationChunk(message=chunk)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else False
|
|
if should_stream:
|
|
stream_iter = self._astream(
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = await acompletion_with_retry(
|
|
self, messages=message_dicts, run_manager=run_manager, **params
|
|
)
|
|
return self._create_chat_result(response)
|
|
|
|
def bind_tools(
|
|
self,
|
|
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, BaseMessage]:
|
|
"""Bind tool-like objects to this chat model.
|
|
|
|
Assumes model is compatible with OpenAI tool-calling API.
|
|
|
|
Args:
|
|
tools: A list of tool definitions to bind to this chat model.
|
|
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
|
models, callables, and BaseTools will be automatically converted to
|
|
their schema dictionary representation.
|
|
tool_choice: Which tool to require the model to call.
|
|
Must be the name of the single provided function or
|
|
"auto" to automatically determine which function to call
|
|
(if any), or a dict of the form:
|
|
{"type": "function", "function": {"name": <<tool_name>>}}.
|
|
**kwargs: Any additional parameters to pass to the
|
|
:class:`~langchain.runnable.Runnable` constructor.
|
|
"""
|
|
|
|
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
|
return super().bind(tools=formatted_tools, **kwargs)
|
|
|
|
@beta()
|
|
def with_structured_output(
|
|
self,
|
|
schema: Union[Dict, Type[BaseModel]],
|
|
*,
|
|
include_raw: bool = False,
|
|
**kwargs: Any,
|
|
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
|
"""Model wrapper that returns outputs formatted to match the given schema.
|
|
|
|
Args:
|
|
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
|
then the model output will be an object of that class. If a dict then
|
|
the model output will be a dict. With a Pydantic class the returned
|
|
attributes will be validated, whereas with a dict they will not be. If
|
|
`method` is "function_calling" and `schema` is a dict, then the dict
|
|
must match the OpenAI function-calling spec.
|
|
include_raw: If False then only the parsed structured output is returned. If
|
|
an error occurs during model output parsing it will be raised. If True
|
|
then both the raw model response (a BaseMessage) and the parsed model
|
|
response will be returned. If an error occurs during output parsing it
|
|
will be caught and returned as well. The final output is always a dict
|
|
with keys "raw", "parsed", and "parsing_error".
|
|
|
|
Returns:
|
|
A Runnable that takes any ChatModel input and returns as output:
|
|
|
|
If include_raw is True then a dict with keys:
|
|
raw: BaseMessage
|
|
parsed: Optional[_DictOrPydantic]
|
|
parsing_error: Optional[BaseException]
|
|
|
|
If include_raw is False then just _DictOrPydantic is returned,
|
|
where _DictOrPydantic depends on the schema:
|
|
|
|
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
|
class.
|
|
|
|
If schema is a dict then _DictOrPydantic is a dict.
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import ChatMistralAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
|
|
# -> AnswerWithJustification(
|
|
# answer='They weigh the same',
|
|
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
|
# )
|
|
|
|
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import ChatMistralAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
|
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
|
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
|
# 'parsing_error': None
|
|
# }
|
|
|
|
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
|
.. code-block:: python
|
|
|
|
from langchain_mistralai import ChatMistralAI
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.utils.function_calling import convert_to_openai_tool
|
|
|
|
class AnswerWithJustification(BaseModel):
|
|
'''An answer to the user question along with justification for the answer.'''
|
|
answer: str
|
|
justification: str
|
|
|
|
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
|
llm = ChatMistralAI(model="mistral-large-latest", temperature=0)
|
|
structured_llm = llm.with_structured_output(dict_schema)
|
|
|
|
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
|
# -> {
|
|
# 'answer': 'They weigh the same',
|
|
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
|
# }
|
|
|
|
""" # noqa: E501
|
|
if kwargs:
|
|
raise ValueError(f"Received unsupported arguments {kwargs}")
|
|
is_pydantic_schema = isinstance(schema, type) and issubclass(schema, BaseModel)
|
|
llm = self.bind_tools([schema], tool_choice="any")
|
|
if is_pydantic_schema:
|
|
output_parser: OutputParserLike = PydanticToolsParser(
|
|
tools=[schema], first_tool_only=True
|
|
)
|
|
else:
|
|
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
|
output_parser = JsonOutputKeyToolsParser(
|
|
key_name=key_name, first_tool_only=True
|
|
)
|
|
|
|
if include_raw:
|
|
parser_assign = RunnablePassthrough.assign(
|
|
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
|
)
|
|
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
|
parser_with_fallback = parser_assign.with_fallbacks(
|
|
[parser_none], exception_key="parsing_error"
|
|
)
|
|
return RunnableMap(raw=llm) | parser_with_fallback
|
|
else:
|
|
return llm | output_parser
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return self._default_params
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "mistralai-chat"
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"mistral_api_key": "MISTRAL_API_KEY"}
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
return True
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "chat_models", "mistralai"]
|