mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
5db6b796cf
Thanks @amogkam for the addition! Refactored slightly --------- Co-authored-by: Amog Kamsetty <amogkam@users.noreply.github.com>
41 lines
1.2 KiB
Python
41 lines
1.2 KiB
Python
"""Test huggingface embeddings."""
|
|
|
|
from langchain.embeddings.huggingface import (
|
|
HuggingFaceEmbeddings,
|
|
HuggingFaceInstructEmbeddings,
|
|
)
|
|
|
|
|
|
def test_huggingface_embedding_documents() -> None:
|
|
"""Test huggingface embeddings."""
|
|
documents = ["foo bar"]
|
|
embedding = HuggingFaceEmbeddings()
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
def test_huggingface_embedding_query() -> None:
|
|
"""Test huggingface embeddings."""
|
|
document = "foo bar"
|
|
embedding = HuggingFaceEmbeddings(encode_kwargs={"batch_size": 16})
|
|
output = embedding.embed_query(document)
|
|
assert len(output) == 768
|
|
|
|
|
|
def test_huggingface_instructor_embedding_documents() -> None:
|
|
"""Test huggingface embeddings."""
|
|
documents = ["foo bar"]
|
|
embedding = HuggingFaceInstructEmbeddings()
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 768
|
|
|
|
|
|
def test_huggingface_instructor_embedding_query() -> None:
|
|
"""Test huggingface embeddings."""
|
|
query = "foo bar"
|
|
embedding = HuggingFaceInstructEmbeddings()
|
|
output = embedding.embed_query(query)
|
|
assert len(output) == 768
|